#include<iostream>
#include<sstream>
#include<vector> std::vector<int> split(std::string& str, char delim = ' ') {
std::stringstream ss(str);
std::string tempStr;
std::vector<int> vector; while (getline(ss, tempStr, delim)) {
vector.push_back(atoi(tempStr.c_str()));
} return vector;
} int main() {
std::string ret;
int ans = 0;
while (getline(std::cin, ret, '\n')) {
std::vector<int> vector = split(ret);
ans = vector[0] + vector[1];
std::cout << ans << std::endl;
} return 0;
}

3. 无重复字符的最长子串

#include <iostream>
#include <unordered_set> class Solution {
public:
int lengthOfLongestSubstring(std::string s) {
int length = s.size();
int maxLength = 0;
int lastMaxLength = 0;
std::unordered_set<char> unorderedSet;
//std::set<int> set; for (int i = 0; i < length; ++i) {
unorderedSet.clear();
for (int j = i; j < length; ++j) {
if (unorderedSet.find(s[j]) != unorderedSet.end()) {
break;
}
unorderedSet.insert(s[j]);
int nowLength = unorderedSet.size();
maxLength = nowLength > lastMaxLength ? nowLength : lastMaxLength;
}
lastMaxLength = maxLength;
}
return maxLength;
}
};

49. 字母异位词分组

#include <iostream>
#include <vector>
#include <unordered_set>
#include <map>
#include <algorithm> /* 给定一个字符串数组,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。 示例: 输入: ["eat", "tea", "tan", "ate", "nat", "bat"]
输出:
[
["ate","eat","tea"],
["nat","tan"],
["bat"]
] */ class Solution {
public:
std::vector<std::vector<std::string>> groupAnagrams(std::vector<std::string>& strs) {
std::map<std::string, std::vector<std::string>> map;
for (auto ss: strs) {
std::string value = ss;
std::sort(ss.begin(), ss.end());
map[ss].push_back(value);
} std::vector<std::vector<std::string>> ret;
for (auto it = map.begin(); it != map.end(); it++) {
ret.push_back(it->second);
} return ret;
}
};

86. 分隔链表

/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* partition(ListNode* head, int x) {
ListNode* small = new ListNode(0);
ListNode* smallHead = small;
ListNode* large = new ListNode(0);
ListNode* largeHead = large; while (head != nullptr) {
if (head->val < x) {
small->next = head;
small = small->next; } else {
large->next = head;
large = large->next;
} head = head->next;
} large->next = nullptr;
small->next = largeHead->next; return smallHead->next; }
};

16. 最接近的三数之和

错误代码:这个思路会少算很多可能性!!!

class Solution {
public:
int threeSumClosest(std::vector<int>& nums, int target) {
if (nums.size() < 3) {
return 0;
} std::sort(nums.begin(), nums.end()); int start = 0;
int end = nums.size() - 1;
int sum = 0;
int ans = nums[0] + nums[1] + nums[2]; while (start < end) {
//这里会少算很多可能性,这里只是计算了,s,s+1,e这种可能性,并没有算s+2,s+3,..的可能性,复杂度低了,但是结果就不对了,所以因此应该在外面再加一层循环,确保每一种可能性都被计算到
sum = nums[start] + nums[start + 1] + nums[end]; if(std::abs(target - sum) < std::abs(target - ans))
ans = sum; if (sum < target) {
start++;
} else if (sum > target) {
end--;
} else {
return ans;
} } return ans;
}

正确代码:

class Solution {
public:
int threeSumClosest(std::vector<int>& nums, int target) {
std::sort(nums.begin(), nums.end()); int s = 0;
int e = nums.size() - 1;
int ans = nums[0] + nums[1] + nums[2]; for (int i = 0; i < nums.size(); ++i) {
s = i + 1;//在这里更新s,保证s可以中开始---一直跳到--->结尾
e = nums.size() - 1;//e每次都要更新,因为可能在while循环中更新了e
while (s < e) {
int sum = nums[i] + nums[s] + nums[e];
if (std::abs(target - ans) > std::abs(target - sum))
ans = sum; if (sum == target)
return sum;
if (sum < target)
s++;
if (sum > target)
e--;
}
} return ans;
}
};

27. 移除元素

#include <vector>

class Solution {
public:
int removeElement(std::vector<int>& nums, int val) {
int left = 0;
//最终目标:保证(0, left)区间内一个val都没有 for (int right = 0; right < nums.size(); ++right) {
if (nums[right] != val) {
nums[left] = nums[right];
left++;
}
} return left;
}
};

641. 设计循环双端队列

#include <vector>

class MyCircularDeque {
private:
std::vector<int> vector_;
int length_{ 0 };
public:
/** Initialize your data structure here. Set the size of the deque to be k. */
MyCircularDeque(int k) {
length_ = k;
//这里要用reserve不要用resize
vector_.reserve(k);
} /** Adds an item at the front of Deque. Return true if the operation is successful. */
bool insertFront(int value) {
if (isFull())
return false;
vector_.insert(vector_.begin(), value);
return true;
} /** Adds an item at the rear of Deque. Return true if the operation is successful. */
bool insertLast(int value) {
if (isFull())
return false;
vector_.push_back(value);
return true;
} /** Deletes an item from the front of Deque. Return true if the operation is successful. */
bool deleteFront() {
if (isEmpty())
return false;
vector_.erase(vector_.begin());
return true;
} /** Deletes an item from the rear of Deque. Return true if the operation is successful. */
bool deleteLast() {
if (isEmpty())
return false;
//注意,删除最后一个元素的时候,要减1,迭代器(vector_.end())指向的是最后一个元素的下一个
vector_.erase(vector_.end() - 1);
return true;
} /** Get the front item from the deque. */
int getFront() {
if (isEmpty())
return -1;
return vector_.front();
} /** Get the last item from the deque. */
int getRear() {
if (isEmpty())
return -1;
return vector_.back();
} /** Checks whether the circular deque is empty or not. */
bool isEmpty() {
return vector_.empty();
} /** Checks whether the circular deque is full or not. */
bool isFull() {
return length_ == vector_.size();
}
}; /**
* Your MyCircularDeque object will be instantiated and called as such:
* MyCircularDeque* obj = new MyCircularDeque(k);
* bool param_1 = obj->insertFront(value);
* bool param_2 = obj->insertLast(value);
* bool param_3 = obj->deleteFront();
* bool param_4 = obj->deleteLast();
* int param_5 = obj->getFront();
* int param_6 = obj->getRear();
* bool param_7 = obj->isEmpty();
* bool param_8 = obj->isFull();
*/

406. 根据身高重建队列

#include <vector>
#include <algorithm> class Solution {
public:
std::vector<std::vector<int>> reconstructQueue(std::vector<std::vector<int>>& people) {
//1.排序
std::sort(people.begin(), people.end(),
[](std::vector<int> a, std::vector<int> b) {
if (a[0] != b[0])
return a[0] > b[0];
return a[1] < b[1];
}); //2.插入
std::vector<std::vector<int>> res;
for (auto p : people) {
if (res.size() < p[1])
res.push_back(p);
if (res.size() >= p[1])
res.insert(res.begin() + p[1], p);
} return res;
}
};

946. 验证栈序列

#include <stack>
#include <vector> class Solution {
private:
std::stack<int> *stack_ = new std::stack<int>;
public:
bool validateStackSequences(std::vector<int>& pushed, std::vector<int>& popped) {
int length = pushed.size();
int j = 0; for (int i = 0; i < length; ++i) {
stack_->push(pushed[i]); while (!stack_->empty() && stack_->top() == popped[j]) {
j++;
stack_->pop();
}
} //return stack_->empty();
return j == length;
}
};

笔记:bfs和dfs以及bfs衍生的层序遍历

https://leetcode-cn.com/problems/binary-tree-level-order-traversal/solution/bfs-de-shi-yong-chang-jing-zong-jie-ceng-xu-bian-l/

bfs层次遍历二叉树代码:

#include <vector>
#include <queue> //Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
}; class Solution {
private:
std::queue<TreeNode*> *queue_ = new std::queue<TreeNode*>;
public:
std::vector<std::vector<int>> levelOrder(TreeNode* root) {
//bfs
queue_->push(root); while (!queue_->empty()) { root = queue_->front();
queue_->pop(); if (root->left != nullptr) {
queue_->push(root->left);
} if (root->right != nullptr) {
queue_->push(root->right);
}
} }
};

102. 二叉树的层序遍历

进一步,bfs衍生出层序遍历:

#include <vector>
#include <queue> //Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
}; class Solution {
private:
std::queue<TreeNode*> *queue_ = new std::queue<TreeNode*>;
public:
std::vector<std::vector<int>> levelOrder(TreeNode* root) {
//层序遍历
std::vector<std::vector<int>> ret;
if (root != nullptr)
queue_->push(root); while (!queue_->empty()) {
int nodeNum = queue_->size();
std::vector<int> vector;
for (int i = 0; i < nodeNum; ++i) {
root = queue_->front();
queue_->pop(); vector.push_back(root->val); if (root->left != nullptr) {
queue_->push(root->left);
}
if (root->right != nullptr) {
queue_->push(root->right);
}
} ret.push_back(vector);
} return ret;
}
};

116. 填充每个节点的下一个右侧节点指针

#include <vector>
#include <queue> // Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next; Node() : val(0), left( nullptr), right( nullptr), next( nullptr) {} Node(int _val) : val(_val), left( nullptr), right( nullptr), next( nullptr) {} Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
}; class Solution {
private:
std::queue<Node*> *queue_ = new std::queue<Node*>;
public:
Node* connect(Node* root) {
//层序遍历
if (root != nullptr)
queue_->push(root); while (!queue_->empty()) {
int nodeNum = queue_->size(); for (int i = 0; i < nodeNum; ++i) {
//注意这里的返回值不能是root,因为会更新root,导致结果不对
//只需要更新原二叉树中响应位置的节点即可
Node* temp = queue_->front();
queue_->pop(); //连接,但是每层的最后一个节点不处理
if (i < nodeNum - 1)
temp->next = queue_->front(); if (temp->left != nullptr)
queue_->push(temp->left);
if (temp->right != nullptr)
queue_->push(temp->right);
}
}
return root;
}
};

61. 旋转链表

#include <vector>
#include <queue> //Definition for singly-linked list.
struct ListNode {
int val;
ListNode *next;
ListNode() : val(0), next(nullptr) {}
ListNode(int x) : val(x), next(nullptr) {}
ListNode(int x, ListNode *next) : val(x), next(next) {}
}; class Solution {
public:
ListNode* rotateRight(ListNode* head, int k) {
if (head == nullptr || head->next == nullptr || k == 0)
return head; //求链表长度
int length = 1;
ListNode* tmp = head;
while (tmp->next != nullptr) {
tmp = tmp->next;
length++;
}
int count = k % length;
if (count == 0)
return head; tmp->next = head;//链表连接成环 for (int i = 0; i < length - count - 1; ++i) {
head = head->next;
} ListNode* ret = head->next;
head->next = nullptr; return ret;
}
};

729. 我的日程安排表 I

#include <map>
#include <algorithm> class MyCalendar {
public:
MyCalendar() { } bool book(int start, int end) {
if (start >= end)
return false; //0.start 已重复
if (map_.find(start) != map_.end())
return false; //1.首先插入
map_.emplace(start, end); //2.返回刚刚插入的迭代器位置
auto pos = map_.find(start);
//auto pos = map_.find(start).first; //3.与(有序)map中的前后迭代器进行比较,根据比较结果决定保留或者删除
//3.1 与前一个比较
if (pos != map_.begin()) {
--pos;//得到相邻的前一个迭代器 注意:因为map有序,所以这里默认的前一个迭代器的key < start
if (pos->second > start) {
//删除
map_.erase(start);
return false;
}
++pos;
} //3.2 与后一个比较
++pos;//得到相邻的后一个迭代器,这里的后一个迭代器默认的key > start
if (pos != map_.end()) {
if (pos->first < end) {
//删除
map_.erase(start);
return false;
}
} return true;
} private:
std::map<int, int> map_;
}; /**
* Your MyCalendar object will be instantiated and called as such:
* MyCalendar* obj = new MyCalendar();
* bool param_1 = obj.book(start,end);
*/

105. 从前序与中序遍历序列构造二叉树

#include <vector>
#include <unordered_map> //Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
}; class Solution {
public:
TreeNode* buildTree(std::vector<int>& preorder, std::vector<int>& inorder) {
int length = preorder.size(); for (int i = 0; i < length; ++i) {
unorderedMap_[inorder[i]] = i;
} return mybuildTree(preorder, 0, length - 1, unorderedMap_, 0, length - 1);
} TreeNode* mybuildTree(std::vector<int>& preorder, int preLeft, int preRight,
std::unordered_map<int, int>& map, int inLeft, int inRight) {
//递归终止条件
if (preLeft > preRight || inLeft > inRight)
return nullptr; //0.构建待返回的二叉树
int rootVal = preorder[preLeft];
TreeNode* root = new TreeNode(rootVal); //1.得到根节点
//注意:这里要用全局维护的唯一map!!!!!!!!!!!!!!!!!!!!!
int pIndex = unorderedMap_[rootVal]; //2.构建左子树
root->left = mybuildTree(preorder, preLeft + 1, pIndex - inLeft + preLeft, unorderedMap_, inLeft, pIndex -1); //3.构建右子树
root->right = mybuildTree(preorder, pIndex - inLeft + preLeft + 1, preRight, unorderedMap_, pIndex + 1, inRight); return root;
} private:
std::unordered_map<int, int> unorderedMap_;
};

ps:后序和中序也能构造二叉树,代码如下:

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/ /*这是后序和中序的代码!!!!!!!!!!!!!!!!!!!!!!!!!*/
class Solution {
private:
std::unordered_map<int, int> map; public:
TreeNode* mybuildTree(std::vector<int>& bakorder, int bakLeft, int bakRight,
std::unordered_map<int, int>& unorderedMap, int inLeft, int inRight) {
//1.递归终止条件
if (bakLeft > bakRight || inLeft > inRight)
return nullptr; int rootVal = bakorder[bakRight];
TreeNode* root = new TreeNode(rootVal); int pIndex = map[rootVal]; root->left = mybuildTree(bakorder, bakLeft, pIndex-1-inLeft+bakLeft,
map, inLeft, pIndex-1); root->right = mybuildTree(bakorder, pIndex-inLeft+bakLeft, bakRight-1,
map, pIndex+1, inRight); return root;
} TreeNode* buildTree(std::vector<int>& bakorder, std::vector<int>& inorder) {
if (bakorder.size() != inorder.size())
return nullptr; int length = bakorder.size(); for (int i = 0; i < length; ++i) {
map[inorder[i]] = i;
} return mybuildTree(bakorder, 0, length - 1, map, 0, length - 1);
}
};

112. 路径总和

//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
}; class Solution {
public:
bool hasPathSum(TreeNode* root, int targetSum) {
if (root == nullptr)
return false; //递归终止条件
if (root->left == nullptr && root->right == nullptr)
return targetSum == root->val; return hasPathSum(root->left, targetSum - root->val) or
hasPathSum(root->right, targetSum - root->val);
}
};

98. 验证二叉搜索树

中序遍历方法:https://blog.csdn.net/qq_44179564/article/details/108696548

#include <vector>

//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
}; class Solution { private:
std::vector<int> vector;
public:
bool isValidBST(TreeNode* root) {
if (root == nullptr)
return false;
inorder(root); for (int i = 0; i < vector.size() - 1; ++i) {
if (vector[i] >= vector[i + 1])
return false;
} return true;
} void inorder(TreeNode* root) {
if (root == nullptr)
return;
inorder(root->left);
vector.push_back(root->val);
inorder(root->right);
}
};

101. 对称二叉树

//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
}; class Solution {
public:
bool isSymmetric(TreeNode* root) {
return check(root, root);
} bool check(TreeNode* r1, TreeNode* r2) {
if (r1 == nullptr && r2 == nullptr)
return true; if (r1 == nullptr || r2 == nullptr)
return false; return r1->val == r2->val && check(r1->left, r2->right) && check(r1->right, r2->left);
}
};

102. 二叉树的层序遍历

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
std::queue<TreeNode*> *queue_ = new std::queue<TreeNode*>;
public:
std::vector<std::vector<int>> levelOrder(TreeNode* root) {
//层序遍历
std::vector<std::vector<int>> ret;
if (root != nullptr)
queue_->push(root); while (!queue_->empty()) {
int nodeNum = queue_->size();
std::vector<int> vector;
for (int i = 0; i < nodeNum; ++i) {
root = queue_->front();
queue_->pop(); vector.push_back(root->val); if (root->left != nullptr) {
queue_->push(root->left);
}
if (root->right != nullptr) {
queue_->push(root->right);
}
} ret.push_back(vector);
} return ret;
}
};

1047. 删除字符串中的所有相邻重复项

冗余代码思路,用两个栈解决:

#include <string>
#include <stack> class Solution {
private:
std::stack<char> stack_;
public:
std::string removeDuplicates(std::string S) { std::string ret; for (auto s : S) {
if (!stack_.empty() && stack_.top() == s) {
stack_.pop();
} else {
stack_.push(s);
}
} std::stack<char> tmp; while (!stack_.empty()) {
tmp.push(stack_.top());
stack_.pop();
} while (!tmp.empty()) {
ret += tmp.top();
tmp.pop();
} return ret;
}
};

简洁代码,直接利用std::string本身就有的“栈特性”

#include <string>

class Solution {
public:
std::string removeDuplicates(std::string S) { std::string ret; for (auto s : S) {
if (!ret.empty() && ret.back() == s) {
ret.pop_back();//弾栈操作
} else {
ret += s;
}
} return ret;
}
};

1200. 最小绝对差

用stl里面的,可以允许key重复的multimap(注意这个map似乎没有重载[]插入的方式)

对于map:使用insert()插入元素的方式并不能覆盖掉相同key的值(跳过);而使用[]方式则可以覆盖掉之前的值

#include <string>
#include <vector>
#include <map>
#include <algorithm> class Solution {
public:
std::vector<std::vector<int>> minimumAbsDifference(std::vector<int>& arr) { std::sort(arr.begin(), arr.end()); for (int i = 0; i < arr.size() - 1; ++i) {
std::vector<int> vector;
vector.clear();
vector.push_back(arr[i]);
vector.push_back(arr[i + 1]);
multimap_.insert(std::make_pair(std::abs(arr[i] - arr[i + 1]), vector));
//multimap_[std::abs(arr[i] - arr[i + 1])] = vector;
} int flag = multimap_.begin()->first;
std::vector<std::vector<int>> ret; for (auto it = multimap_.begin(); it != multimap_.end(); ++it) {
if (it->first > flag) {
break;
} ret.push_back(it->second);
} return ret;
} private:
std::multimap<int, std::vector<int>> multimap_;
//std::map<int, std::vector<int>> map_;
};

392. 判断子序列

#include <string>

class Solution {
public:
bool isSubsequence(std::string s, std::string t) {
int sLength = s.size();
int tLength = t.size(); int i = 0;
int j = 0; while (i < sLength && j < tLength) {
if (s[i] == t[j])
i++;
j++;
} return i == sLength;
}
};

1267. 统计参与通信的服务器

#include <vector>

class Solution {
public:
int countServers(std::vector<std::vector<int>>& grid) {
//行
int m = grid.size();
//列
int n = grid[0].size(); //求每一行/列共有多少台服务器
std::vector<int> count_m(m), count_n(n);
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
count_m[i]++;
count_n[j]++;
}
}
} //第二次遍历,求可通信服务器数量
int ret = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
//判断有效的条件
if (grid[i][j] == 1 && (count_m[i] > 1 || count_n[j] > 1)) {
ret++;
}
}
} return ret;
}
};

剑指 Offer 33. 二叉搜索树的后序遍历序列

#include <vector>

class Solution {
public:
/*
* 1.后序遍历: 左、右、根
* 2.二叉搜索树:左子树所有节点的值 < 根节点的值;
* 右子树所有节点的值 > 根节点的值*/
bool verifyPostorder(std::vector<int>& postorder) { return help(postorder, 0, postorder.size() - 1);
} bool help(std::vector<int>& postorder, int i, int j) {
//递归终止条件:整个二叉树遍历完了
if (i >= j)
return true;
//利用指针p,试图: 任务1.区分左右子树;任务2.遍历完这一次递归的整个树
int p = i;
while (postorder[p] < postorder[j]) {
p++;
}
//找到了右子树,任务1完成
int m = p;
while (postorder[p] > postorder[j]) {
p++;
}
//遍历完了这一次递归的整个树,任务2完成 //继续递归,分别判断左子树和右子树
return j == p && help(postorder, i, m -1) && help(postorder, m, j-1);
}
};

300. 最长递增子序列

#include <vector>
#include <algorithm> class Solution {
public:
int lengthOfLIS(std::vector<int>& nums) {
int n = nums.size();
if (n == 0)
return 0; std::vector<int> dp(n ,1); for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
dp[i] = std::max(dp[i], dp[j] + 1);
}
}
} return *std::max_element(dp.begin(), dp.end()); }
};

c++刷leetcode记录的更多相关文章

  1. 用golang刷LeetCode

    用golang刷LeetCode 用Go语言刷LeetCode记录,只是为了练习Go语言,能力有限不保证都是最优解,只能在此抛转引玉了. 数据结构和算法 数据结构和算法是程序员的命根子,没了命根子也就 ...

  2. LeetCode刷题记录(python3)

    由于之前对算法题接触不多,因此暂时只做easy和medium难度的题. 看完了<算法(第四版)>后重新开始刷LeetCode了,这次决定按topic来刷题,有一个大致的方向.有些题不止包含 ...

  3. leetcode刷题记录--js

    leetcode刷题记录 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但 ...

  4. Leetcode刷题记录(python3)

    Leetcode刷题记录(python3) 顺序刷题 1~5 ---1.两数之和 ---2.两数相加 ---3. 无重复字符的最长子串 ---4.寻找两个有序数组的中位数 ---5.最长回文子串 6- ...

  5. 刷leetcode是什么样的体验?【转】

    转自:https://www.zhihu.com/question/32322023 刷leetcode是什么样的体验? https://leetcode.com/ 1 条评论   默认排序 按时间排 ...

  6. GitHub 热点速览 Vol.18:刷 LeetCode 的正确姿势

    作者:HelloGitHub-小鱼干 摘要:找对路子,事半功倍,正如本周 GitHub Trending #刷 LeetCode# 主题想表达的那般,正确的学习姿势方能让人走得更远,走进大厂

  7. 刷LeetCode的简易姿势

    近期抽空刷了刷LeetCode,算是补补课. 由于不是很习惯直接在网页上Coding&Debug,所以还是在本地环境下进行编码调试,觉得基本OK后再在网页上提交. 主要采用Python3进行提 ...

  8. 【算法】数据结构与算法基础总览(中)——刷Leetcode等算法题时一些很实用的jdk辅助方法锦集

    最近重新学习数据结构与算法以及刷leetcode算法题时,发现不少jdk自带的方法可以提升刷题的效率.这些小技巧不仅仅对刷算法题带来便利,对我们平时开发也是很有帮助的.本文以java语言为基础,记录了 ...

  9. 用 JavaScript 刷 LeetCode 的正确姿势【进阶】

    之前写了篇文章 用JavaScript刷LeetCode的正确姿势,简单总结一些用 JavaScript 刷力扣的基本调试技巧.最近又刷了点题,总结了些数据结构和算法,希望能对各为 JSer 刷题提供 ...

随机推荐

  1. Linux无写权限打zip

    opt下tiger.txt没权限得时候可以这样直接用zip打包 zip /tmp/1.zip /opt/tiger.txt

  2. linux判断物理CPU,逻辑CPU和CPU核数

    ① 物理CPU 实际Server中插槽上的CPU个数 物理cpu数量,可以数不重复的 physical id 有几个 ② 逻辑CPU Linux用户对 /proc/cpuinfo 这个文件肯定不陌生. ...

  3. Flink源码学习笔记(2) 基于Yarn的自动伸缩容实现

    1.背景介绍 随着实时计算技术在之家内部的逐步推广,Flink 任务数及计算量都在持续增长,集群规模的也在逐步增大,本着降本提效的理念,我们研发了 Flink 任务伸缩容功能: 提供自动伸缩容功能,可 ...

  4. react直接使用bootstrap失效的原因

    react用的是className!而不是class~

  5. java 变量的定义 类型转换 基本的数据类型

    package com.aaa.zxf.ajax.test; import org.junit.Test; /** * 六. * 如何在ideal的maven项目中导入 Test 测试类? * * * ...

  6. 羽夏看Win系统内核——同步篇

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  7. NoSQL 之Redis的5大数据类型

    NoSQL 之Redis的5大数据类型 Redis的五大数据类型也称五大数据对象:了解过6大数据结构,Redis并没有直接使用这些结构来实现键值对数据库,而是使用这些结构构建了一个对象系统redisO ...

  8. Java经典案例之用三种方法求1~100以内素数之和

    素数,不能被除了1和本身以外整除的数被称为素数.接下来我用三种方式求得1~100以内素数. 方式一 外层每循环一次,内层就计算出这个数有几个因子,我们都知道素数的因子只有两个,所以如果个数为2就加进总 ...

  9. SQL 在数据库中查找拥有此列名的所有表

    SELECT TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE COLUMN_NAME='Column' #"Column"为要查询 ...

  10. Hyperledger Fabric 2.x 自定义智能合约

    一.说明 为了持续地进行信息的更新,以及对账本进行管理(写入交易,进行查询等),区块链网络引入了智能合约来实现对账本的访问和控制:智能合约在 Fabric 中称之为 链码,是区块链应用的业务逻辑. 本 ...