k8s replicaset controller分析(1)-初始化与启动分析
replicaset controller分析
replicaset controller简介
replicaset controller是kube-controller-manager组件中众多控制器中的一个,是 replicaset 资源对象的控制器,其通过对replicaset、pod 2种资源的监听,当这2种资源发生变化时会触发 replicaset controller 对相应的replicaset对象进行调谐操作,从而完成replicaset期望副本数的调谐,当实际pod的数量未达到预期时创建pod,当实际pod的数量超过预期时删除pod。
replicaset controller主要作用是根据replicaset对象所期望的pod数量与现存pod数量做比较,然后根据比较结果创建/删除pod,最终使得replicaset对象所期望的pod数量与现存pod数量相等。
replicaset controller架构图
replicaset controller的大致组成和处理流程如下图,replicaset controller对pod和replicaset对象注册了event handler,当有事件时,会watch到然后将对应的replicaset对象放入到queue中,然后syncReplicaSet
方法为replicaset controller调谐replicaset对象的核心处理逻辑所在,从queue中取出replicaset对象,做调谐处理。
replicaset controller分析将分为3大块进行,分别是:
(1)replicaset controller初始化和启动分析;
(2)replicaset controller核心处理逻辑分析;
(3)replicaset controller expectations机制分析。
本篇博客先进行replicaset controller初始化和启动分析。
ReplicaSetController的初始化与启动分析
基于tag v1.17.4
https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4
直接以startReplicaSetController函数作为garbage collector的初始化与启动源码分析入口。
startReplicaSetController中调用了replicaset.NewReplicaSetController
来进行ReplicaSetController的初始化,初始化完成后调用Run
进行启动。
这里留意传入Run
方法的参数ctx.ComponentConfig.ReplicaSetController.ConcurrentRSSyncs
,后面会详细分析。
// cmd/kube-controller-manager/app/apps.go
func startReplicaSetController(ctx ControllerContext) (http.Handler, bool, error) {
if !ctx.AvailableResources[schema.GroupVersionResource{Group: "apps", Version: "v1", Resource: "replicasets"}] {
return nil, false, nil
}
go replicaset.NewReplicaSetController(
ctx.InformerFactory.Apps().V1().ReplicaSets(),
ctx.InformerFactory.Core().V1().Pods(),
ctx.ClientBuilder.ClientOrDie("replicaset-controller"),
replicaset.BurstReplicas,
).Run(int(ctx.ComponentConfig.ReplicaSetController.ConcurrentRSSyncs), ctx.Stop)
return nil, true, nil
}
初始化分析
分析入口 NewReplicaSetController
NewReplicaSetController主要是初始化ReplicaSetController,定义replicaset与pod对象的informer,并注册EventHandler-AddFunc、UpdateFunc与DeleteFunc等,用于监听replicaset与pod对象的变动。
// pkg/controller/replicaset/replica_set.go
// NewReplicaSetController configures a replica set controller with the specified event recorder
func NewReplicaSetController(rsInformer appsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, kubeClient clientset.Interface, burstReplicas int) *ReplicaSetController {
eventBroadcaster := record.NewBroadcaster()
eventBroadcaster.StartLogging(klog.Infof)
eventBroadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: kubeClient.CoreV1().Events("")})
return NewBaseController(rsInformer, podInformer, kubeClient, burstReplicas,
apps.SchemeGroupVersion.WithKind("ReplicaSet"),
"replicaset_controller",
"replicaset",
controller.RealPodControl{
KubeClient: kubeClient,
Recorder: eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "replicaset-controller"}),
},
)
}
// NewBaseController is the implementation of NewReplicaSetController with additional injected
// parameters so that it can also serve as the implementation of NewReplicationController.
func NewBaseController(rsInformer appsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, kubeClient clientset.Interface, burstReplicas int,
gvk schema.GroupVersionKind, metricOwnerName, queueName string, podControl controller.PodControlInterface) *ReplicaSetController {
if kubeClient != nil && kubeClient.CoreV1().RESTClient().GetRateLimiter() != nil {
ratelimiter.RegisterMetricAndTrackRateLimiterUsage(metricOwnerName, kubeClient.CoreV1().RESTClient().GetRateLimiter())
}
rsc := &ReplicaSetController{
GroupVersionKind: gvk,
kubeClient: kubeClient,
podControl: podControl,
burstReplicas: burstReplicas,
expectations: controller.NewUIDTrackingControllerExpectations(controller.NewControllerExpectations()),
queue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), queueName),
}
rsInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: rsc.addRS,
UpdateFunc: rsc.updateRS,
DeleteFunc: rsc.deleteRS,
})
rsc.rsLister = rsInformer.Lister()
rsc.rsListerSynced = rsInformer.Informer().HasSynced
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: rsc.addPod,
// This invokes the ReplicaSet for every pod change, eg: host assignment. Though this might seem like
// overkill the most frequent pod update is status, and the associated ReplicaSet will only list from
// local storage, so it should be ok.
UpdateFunc: rsc.updatePod,
DeleteFunc: rsc.deletePod,
})
rsc.podLister = podInformer.Lister()
rsc.podListerSynced = podInformer.Informer().HasSynced
rsc.syncHandler = rsc.syncReplicaSet
return rsc
}
queue
queue是replicaset controller做sync操作的关键。当replicaset或pod对象发生改变,其对应的EventHandler会把该对象往queue中加入,而replicaset controller的Run方法中调用的rsc.worker(后面再做分析)会从queue中获取对象并做相应的调谐操作。
queue中存放的对象格式:namespace/name
type ReplicaSetController struct {
...
// Controllers that need to be synced
queue workqueue.RateLimitingInterface
}
queue的来源是replicaset与pod对象的EventHandler,下面来一个个分析。
1 rsc.addRS
当发现有新增的replicaset对象,会调用该方法。
主要逻辑:调用rsc.enqueueRS将该对象加入queue中。
// pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) addRS(obj interface{}) {
rs := obj.(*apps.ReplicaSet)
klog.V(4).Infof("Adding %s %s/%s", rsc.Kind, rs.Namespace, rs.Name)
rsc.enqueueRS(rs)
}
rsc.enqueueRS
组装key,将key加入queue。
func (rsc *ReplicaSetController) enqueueRS(rs *apps.ReplicaSet) {
key, err := controller.KeyFunc(rs)
if err != nil {
utilruntime.HandleError(fmt.Errorf("couldn't get key for object %#v: %v", rs, err))
return
}
rsc.queue.Add(key)
}
2 rsc.updateRS
当发现replicaset对象有更改,会调用该方法。
主要逻辑:
(1)如果新旧replicaset对象的uid不一致,则调用rsc.deleteRS(rsc.deleteRS在后面分析);
(2)调用rsc.enqueueRS,组装key,将key加入queue。
// pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) updateRS(old, cur interface{}) {
oldRS := old.(*apps.ReplicaSet)
curRS := cur.(*apps.ReplicaSet)
// TODO: make a KEP and fix informers to always call the delete event handler on re-create
if curRS.UID != oldRS.UID {
key, err := controller.KeyFunc(oldRS)
if err != nil {
utilruntime.HandleError(fmt.Errorf("couldn't get key for object %#v: %v", oldRS, err))
return
}
rsc.deleteRS(cache.DeletedFinalStateUnknown{
Key: key,
Obj: oldRS,
})
}
// You might imagine that we only really need to enqueue the
// replica set when Spec changes, but it is safer to sync any
// time this function is triggered. That way a full informer
// resync can requeue any replica set that don't yet have pods
// but whose last attempts at creating a pod have failed (since
// we don't block on creation of pods) instead of those
// replica sets stalling indefinitely. Enqueueing every time
// does result in some spurious syncs (like when Status.Replica
// is updated and the watch notification from it retriggers
// this function), but in general extra resyncs shouldn't be
// that bad as ReplicaSets that haven't met expectations yet won't
// sync, and all the listing is done using local stores.
if *(oldRS.Spec.Replicas) != *(curRS.Spec.Replicas) {
klog.V(4).Infof("%v %v updated. Desired pod count change: %d->%d", rsc.Kind, curRS.Name, *(oldRS.Spec.Replicas), *(curRS.Spec.Replicas))
}
rsc.enqueueRS(curRS)
}
3 rsc.deleteRS
当发现replicaset对象被删除,会调用该方法。
主要逻辑:
(1)调用rsc.expectations.DeleteExpectations
方法删除该rs的expectations(关于expectations机制,会在后面单独进行分析,这里有个印象就行);
(2)组装key,放入queue中。
// pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) deleteRS(obj interface{}) {
rs, ok := obj.(*apps.ReplicaSet)
if !ok {
tombstone, ok := obj.(cache.DeletedFinalStateUnknown)
if !ok {
utilruntime.HandleError(fmt.Errorf("couldn't get object from tombstone %#v", obj))
return
}
rs, ok = tombstone.Obj.(*apps.ReplicaSet)
if !ok {
utilruntime.HandleError(fmt.Errorf("tombstone contained object that is not a ReplicaSet %#v", obj))
return
}
}
key, err := controller.KeyFunc(rs)
if err != nil {
utilruntime.HandleError(fmt.Errorf("couldn't get key for object %#v: %v", rs, err))
return
}
klog.V(4).Infof("Deleting %s %q", rsc.Kind, key)
// Delete expectations for the ReplicaSet so if we create a new one with the same name it starts clean
rsc.expectations.DeleteExpectations(key)
rsc.queue.Add(key)
}
4 rsc.addPod
当发现有新增的pod对象,会调用该方法。
主要逻辑:
(1)如果pod的DeletionTimestamp属性不为空,则调用rsc.deletePod
(后面再做分析),然后返回;
(2)调用metav1.GetControllerOf
获取该pod对象的OwnerReference,并判断该pod是否有上层controller,有则再调用rsc.resolveControllerRef查询该pod所属的replicaset是否存在,不存在则直接返回;
(3)调用rsc.expectations.CreationObserved
方法,将该rs的expectations期望创建pod数量减1(关于expectations机制,会在后面单独进行分析,这里有个印象就行);
(4)组装key,放入queue中。
注意:pod的eventHandler处理逻辑依然是将pod对应的replicaset对象加入queue中,而不是将pod加入到queue中。
// pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) addPod(obj interface{}) {
pod := obj.(*v1.Pod)
if pod.DeletionTimestamp != nil {
// on a restart of the controller manager, it's possible a new pod shows up in a state that
// is already pending deletion. Prevent the pod from being a creation observation.
rsc.deletePod(pod)
return
}
// If it has a ControllerRef, that's all that matters.
if controllerRef := metav1.GetControllerOf(pod); controllerRef != nil {
rs := rsc.resolveControllerRef(pod.Namespace, controllerRef)
if rs == nil {
return
}
rsKey, err := controller.KeyFunc(rs)
if err != nil {
return
}
klog.V(4).Infof("Pod %s created: %#v.", pod.Name, pod)
rsc.expectations.CreationObserved(rsKey)
rsc.queue.Add(rsKey)
return
}
// Otherwise, it's an orphan. Get a list of all matching ReplicaSets and sync
// them to see if anyone wants to adopt it.
// DO NOT observe creation because no controller should be waiting for an
// orphan.
rss := rsc.getPodReplicaSets(pod)
if len(rss) == 0 {
return
}
klog.V(4).Infof("Orphan Pod %s created: %#v.", pod.Name, pod)
for _, rs := range rss {
rsc.enqueueRS(rs)
}
}
5 rsc.updatePod
当发现有pod对象发生更改,会调用该方法。
主要逻辑:
(1)判断新旧pod的ResourceVersion,如一致,代表无变化,直接返回;
(2)如果pod的DeletionTimestamp不为空,则调用rsc.deletePod(后面再做分析),然后返回;
(3)...
// pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) updatePod(old, cur interface{}) {
curPod := cur.(*v1.Pod)
oldPod := old.(*v1.Pod)
if curPod.ResourceVersion == oldPod.ResourceVersion {
// Periodic resync will send update events for all known pods.
// Two different versions of the same pod will always have different RVs.
return
}
labelChanged := !reflect.DeepEqual(curPod.Labels, oldPod.Labels)
if curPod.DeletionTimestamp != nil {
// when a pod is deleted gracefully it's deletion timestamp is first modified to reflect a grace period,
// and after such time has passed, the kubelet actually deletes it from the store. We receive an update
// for modification of the deletion timestamp and expect an rs to create more replicas asap, not wait
// until the kubelet actually deletes the pod. This is different from the Phase of a pod changing, because
// an rs never initiates a phase change, and so is never asleep waiting for the same.
rsc.deletePod(curPod)
if labelChanged {
// we don't need to check the oldPod.DeletionTimestamp because DeletionTimestamp cannot be unset.
rsc.deletePod(oldPod)
}
return
}
curControllerRef := metav1.GetControllerOf(curPod)
oldControllerRef := metav1.GetControllerOf(oldPod)
controllerRefChanged := !reflect.DeepEqual(curControllerRef, oldControllerRef)
if controllerRefChanged && oldControllerRef != nil {
// The ControllerRef was changed. Sync the old controller, if any.
if rs := rsc.resolveControllerRef(oldPod.Namespace, oldControllerRef); rs != nil {
rsc.enqueueRS(rs)
}
}
// If it has a ControllerRef, that's all that matters.
if curControllerRef != nil {
rs := rsc.resolveControllerRef(curPod.Namespace, curControllerRef)
if rs == nil {
return
}
klog.V(4).Infof("Pod %s updated, objectMeta %+v -> %+v.", curPod.Name, oldPod.ObjectMeta, curPod.ObjectMeta)
rsc.enqueueRS(rs)
// TODO: MinReadySeconds in the Pod will generate an Available condition to be added in
// the Pod status which in turn will trigger a requeue of the owning replica set thus
// having its status updated with the newly available replica. For now, we can fake the
// update by resyncing the controller MinReadySeconds after the it is requeued because
// a Pod transitioned to Ready.
// Note that this still suffers from #29229, we are just moving the problem one level
// "closer" to kubelet (from the deployment to the replica set controller).
if !podutil.IsPodReady(oldPod) && podutil.IsPodReady(curPod) && rs.Spec.MinReadySeconds > 0 {
klog.V(2).Infof("%v %q will be enqueued after %ds for availability check", rsc.Kind, rs.Name, rs.Spec.MinReadySeconds)
// Add a second to avoid milliseconds skew in AddAfter.
// See https://github.com/kubernetes/kubernetes/issues/39785#issuecomment-279959133 for more info.
rsc.enqueueRSAfter(rs, (time.Duration(rs.Spec.MinReadySeconds)*time.Second)+time.Second)
}
return
}
// Otherwise, it's an orphan. If anything changed, sync matching controllers
// to see if anyone wants to adopt it now.
if labelChanged || controllerRefChanged {
rss := rsc.getPodReplicaSets(curPod)
if len(rss) == 0 {
return
}
klog.V(4).Infof("Orphan Pod %s updated, objectMeta %+v -> %+v.", curPod.Name, oldPod.ObjectMeta, curPod.ObjectMeta)
for _, rs := range rss {
rsc.enqueueRS(rs)
}
}
}
6 rsc.deletePod
当发现有pod对象被删除,会调用该方法。
主要逻辑:
(1)调用metav1.GetControllerOf获取该pod对象的OwnerReference,并判断是否是controller,是则再调用rsc.resolveControllerRef查询该pod所属的replicaset是否存在,不存在则直接返回;
(2)调用rsc.expectations.DeletionObserved
方法,将该rs的expectations期望删除pod数量减1(关于expectations机制,会在后面单独进行分析,这里有个印象就行);
(3)组装key,放入queue中。
// pkg/controller/replicaset/replica_set.go
func (rsc *ReplicaSetController) deletePod(obj interface{}) {
pod, ok := obj.(*v1.Pod)
// When a delete is dropped, the relist will notice a pod in the store not
// in the list, leading to the insertion of a tombstone object which contains
// the deleted key/value. Note that this value might be stale. If the pod
// changed labels the new ReplicaSet will not be woken up till the periodic resync.
if !ok {
tombstone, ok := obj.(cache.DeletedFinalStateUnknown)
if !ok {
utilruntime.HandleError(fmt.Errorf("couldn't get object from tombstone %+v", obj))
return
}
pod, ok = tombstone.Obj.(*v1.Pod)
if !ok {
utilruntime.HandleError(fmt.Errorf("tombstone contained object that is not a pod %#v", obj))
return
}
}
controllerRef := metav1.GetControllerOf(pod)
if controllerRef == nil {
// No controller should care about orphans being deleted.
return
}
rs := rsc.resolveControllerRef(pod.Namespace, controllerRef)
if rs == nil {
return
}
rsKey, err := controller.KeyFunc(rs)
if err != nil {
utilruntime.HandleError(fmt.Errorf("couldn't get key for object %#v: %v", rs, err))
return
}
klog.V(4).Infof("Pod %s/%s deleted through %v, timestamp %+v: %#v.", pod.Namespace, pod.Name, utilruntime.GetCaller(), pod.DeletionTimestamp, pod)
rsc.expectations.DeletionObserved(rsKey, controller.PodKey(pod))
rsc.queue.Add(rsKey)
}
启动分析
分析入口 Run
根据workers的值启动相应数量的goroutine,循环调用rsc.worker
,从queue中取出一个key做replicaset资源对象的调谐处理。
// pkg/controller/replicaset/replica_set.go
// Run begins watching and syncing.
func (rsc *ReplicaSetController) Run(workers int, stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
defer rsc.queue.ShutDown()
controllerName := strings.ToLower(rsc.Kind)
glog.Infof("Starting %v controller", controllerName)
defer glog.Infof("Shutting down %v controller", controllerName)
if !controller.WaitForCacheSync(rsc.Kind, stopCh, rsc.podListerSynced, rsc.rsListerSynced) {
return
}
for i := 0; i < workers; i++ {
go wait.Until(rsc.worker, time.Second, stopCh)
}
<-stopCh
}
此处的workers
参数由startReplicaSetController
方法中传入,值为ctx.ComponentConfig.ReplicaSetController.ConcurrentRSSyncs
,它的值实际由kube-controller-manager组件的concurrent-replicaset-syncs
启动参数决定,当不配置时,默认值设置为5,代表会起5个goroutine来并行处理和调谐队列中的replicaset对象。
下面来看一下kube-controller-manager组件中replicaset controller相关的concurrent-replicaset-syncs
启动参数。
ReplicaSetControllerOptions
// cmd/kube-controller-manager/app/options/replicasetcontroller.go
// ReplicaSetControllerOptions holds the ReplicaSetController options.
type ReplicaSetControllerOptions struct {
*replicasetconfig.ReplicaSetControllerConfiguration
}
// AddFlags adds flags related to ReplicaSetController for controller manager to the specified FlagSet.
func (o *ReplicaSetControllerOptions) AddFlags(fs *pflag.FlagSet) {
if o == nil {
return
}
fs.Int32Var(&o.ConcurrentRSSyncs, "concurrent-replicaset-syncs", o.ConcurrentRSSyncs, "The number of replica sets that are allowed to sync concurrently. Larger number = more responsive replica management, but more CPU (and network) load")
}
// ApplyTo fills up ReplicaSetController config with options.
func (o *ReplicaSetControllerOptions) ApplyTo(cfg *replicasetconfig.ReplicaSetControllerConfiguration) error {
if o == nil {
return nil
}
cfg.ConcurrentRSSyncs = o.ConcurrentRSSyncs
return nil
}
默认值设置
concurrent-replicaset-syncs参数默认值配置为5。
// pkg/controller/apis/config/v1alpha1/register.go
func init() {
// We only register manually written functions here. The registration of the
// generated functions takes place in the generated files. The separation
// makes the code compile even when the generated files are missing.
localSchemeBuilder.Register(addDefaultingFuncs)
}
// pkg/controller/apis/config/v1alpha1/defaults.go
func addDefaultingFuncs(scheme *kruntime.Scheme) error {
return RegisterDefaults(scheme)
}
// pkg/controller/apis/config/v1alpha1/zz_generated.defaults.go
func RegisterDefaults(scheme *runtime.Scheme) error {
scheme.AddTypeDefaultingFunc(&v1alpha1.KubeControllerManagerConfiguration{}, func(obj interface{}) {
SetObjectDefaults_KubeControllerManagerConfiguration(obj.(*v1alpha1.KubeControllerManagerConfiguration))
})
return nil
}
func SetObjectDefaults_KubeControllerManagerConfiguration(in *v1alpha1.KubeControllerManagerConfiguration) {
SetDefaults_KubeControllerManagerConfiguration(in)
SetDefaults_KubeCloudSharedConfiguration(&in.KubeCloudShared)
}
// pkg/controller/apis/config/v1alpha1/defaults.go
func SetDefaults_KubeControllerManagerConfiguration(obj *kubectrlmgrconfigv1alpha1.KubeControllerManagerConfiguration) {
...
// Use the default RecommendedDefaultReplicaSetControllerConfiguration options
replicasetconfigv1alpha1.RecommendedDefaultReplicaSetControllerConfiguration(&obj.ReplicaSetController)
...
}
// pkg/controller/replicaset/config/v1alpha1/defaults.go
func RecommendedDefaultReplicaSetControllerConfiguration(obj *kubectrlmgrconfigv1alpha1.ReplicaSetControllerConfiguration) {
if obj.ConcurrentRSSyncs == 0 {
obj.ConcurrentRSSyncs = 5
}
}
分析完replicaset controller启动参数后,来看一下启动后调用的核心处理方法。
1 rsc.worker
前面提到,在replicaset controller的Run方法中,会根据workers的值启动相应数量的goroutine,循环调用rsc.worker
,从queue中取出一个key做replicaset资源对象的调谐处理。
rsc.worker主要逻辑:
(1)从queue中获取一个key;
(2)调用rsc.syncHandler
对该key做进一步处理;
(3)从queue中去除该key。
// worker runs a worker thread that just dequeues items, processes them, and marks them done.
// It enforces that the syncHandler is never invoked concurrently with the same key.
func (rsc *ReplicaSetController) worker() {
for rsc.processNextWorkItem() {
}
}
func (rsc *ReplicaSetController) processNextWorkItem() bool {
key, quit := rsc.queue.Get()
if quit {
return false
}
defer rsc.queue.Done(key)
err := rsc.syncHandler(key.(string))
if err == nil {
rsc.queue.Forget(key)
return true
}
utilruntime.HandleError(fmt.Errorf("Sync %q failed with %v", key, err))
rsc.queue.AddRateLimited(key)
return true
}
1.1 rsc.syncHandler
调用rsc.syncHandler
实际为调用rsc.syncReplicaSet
方法,rsc.syncHandler
在NewBaseController
中被赋值为rsc.syncReplicaSet
,后续分析核心处理逻辑时再具体分析rsc.syncHandler
,此处不做深入分析。
// NewBaseController is the implementation of NewReplicaSetController with additional injected
// parameters so that it can also serve as the implementation of NewReplicationController.
func NewBaseController(rsInformer appsinformers.ReplicaSetInformer, podInformer coreinformers.PodInformer, kubeClient clientset.Interface, burstReplicas int,
gvk schema.GroupVersionKind, metricOwnerName, queueName string, podControl controller.PodControlInterface) *ReplicaSetController {
...
rsc.syncHandler = rsc.syncReplicaSet
return rsc
}
总结
replicaset controller是kube-controller-manager组件中众多控制器中的一个,是 replicaset 资源对象的控制器,其通过对replicaset、pod 2种资源的监听,当这2种资源发生变化时会触发 replicaset controller 对相应的replicaset对象进行调谐操作,从而完成replicaset期望副本数的调谐,当实际pod的数量未达到预期时创建pod,当实际pod的数量超过预期时删除pod。
本篇博客对replicaset controller的初始化和启动做了分析,其中对replicaset controller注册的pod和replicaet对象的event handler做了代码分析,以及replicaset controller如何启动,注册了什么方法作为核心处理逻辑方法做了分析与介绍。
replicaset controller架构图
replicaset controller的大致组成和处理流程如下图,replicaset controller对pod和replicaset对象注册了event handler,当有事件时,会watch到然后将对应的replicaset对象放入到queue中,然后syncReplicaSet
方法为replicaset controller调谐replicaset对象的核心处理逻辑所在,从queue中取出replicaset对象,做调谐处理。
接下来的两篇博客,会依次给大家做replicaset controller的核心处理逻辑以及expectations机制的分析,敬请期待。
k8s replicaset controller分析(1)-初始化与启动分析的更多相关文章
- k8s client-go源码分析 informer源码分析(2)-初始化与启动分析
k8s client-go源码分析 informer源码分析(2)-初始化与启动分析 前面一篇文章对k8s informer做了概要分析,本篇文章将对informer的初始化与启动进行分析. info ...
- k8s replicaset controller分析(2)-核心处理逻辑分析
replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...
- k8s replicaset controller 分析(3)-expectations 机制分析
replicaset controller分析 replicaset controller简介 replicaset controller是kube-controller-manager组件中众多控制 ...
- k8s garbage collector分析(1)-启动分析
k8s garbage collector分析(1)-启动分析 garbage collector介绍 Kubernetes garbage collector即垃圾收集器,存在于kube-contr ...
- kube-scheduler源码分析(1)-初始化与启动分析
kube-scheduler源码分析(1)-初始化与启动分析 kube-scheduler简介 kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作 ...
- Solr初始化源码分析-Solr初始化与启动
用solr做项目已经有一年有余,但都是使用层面,只是利用solr现有机制,修改参数,然后监控调优,从没有对solr进行源码级别的研究.但是,最近手头的一个项目,让我感觉必须把solrn内部原理和扩展机 ...
- k8s deployment controller源码分析
deployment controller简介 deployment controller是kube-controller-manager组件中众多控制器中的一个,是 deployment 资源对象的 ...
- k8s endpoints controller分析
k8s endpoints controller分析 endpoints controller简介 endpoints controller是kube-controller-manager组件中众多控 ...
- k8s daemonset controller源码分析
daemonset controller分析 daemonset controller简介 daemonset controller是kube-controller-manager组件中众多控制器中的 ...
随机推荐
- MacOS隐藏及显示文件
显示隐藏文件 显示所有文件 defaults write com.apple.finder AppleShowAllFiles -boolean true killall Finder 不显示隐藏 ...
- Delphi使用Zxing创建二维码
效果 DelphiZXingQRCode下载地址:https://www.debenu.com/open-source/delphizxingqrcode/ 为了调用方便unit DelphiZXIn ...
- 缓存一致性?get💡
大家好,我是老三,今天又是被算法致郁的一天,写篇文章缓一缓. 这篇文章,我们来看看缓存一致性问题. 缓存一致性 我接下来会巴巴说一堆缓存一致性,但是-- 作为一名暴躁老哥,我先把结论撂这了! 缓存和数 ...
- 详解C3P0(数据库连接池)
详解C3P0(数据库连接池) 快速索引 一.基本定义 二.使用C3P0(数据库连接池)的必要性 1.JDBC传统模式开发存在的主要问题 三.数据库连接池的详细说明 四.使用连接池的明显优势 1.资源的 ...
- golang指针接收者和值接收者方法调用笔记
初学go时很多同学会把 值接收者 和 指针接收者 的方法相互调用搞混淆,好多同学都只记得指针类型可以调用值接收者方法和指针接收者方法,而值类型只能调用值接收者方法,其实不然,在某些情况下,值类型也是可 ...
- HTTP证书申请,设置应用程序服务器使用HTTPS
HTTP证书申请,设置应用程序服务器使用HTTPS https://certs.godaddy.com/repository/ 根证书和中级证书下载地址(godaddy) ######Godaddy购 ...
- centos7 下安装 mysql5.7
由于CentOS7的yum源中没有mysql,需要到mysql的官网下载yum repo配置文件. 下载命令: wget https://dev.mysql.com/get/mysql57-commu ...
- PHP中的IMAP扩展简单入门
对于邮件处理来说,大家比较熟悉的应该是 POP3 . SMTP 这类的协议,而今天我们介绍的 IMAP 其实也是非常常用的一种邮件处理协议.它和 POP3 比较类似,都是以接收处理邮件为主.不过相对于 ...
- Flutter 对状态管理的认知与思考
前言 由 编程技术交流圣地[-Flutter群-] 发起的 状态管理研究小组,将就 状态管理 相关话题进行为期 两个月 的讨论. 目前只有内定的 5 个人参与讨论,如果你对 状态管理 有什么独特的见解 ...
- mysql 复合索引 为什么遵循最左原则
1,>mysql :多列索引 https://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html 1>,B+树: h ...