hdu2604 矩阵快速幂
题意:
给你n个人,排成一个长度是n的队伍,人只有两类f,m,问可以有多少种排法使度列中不出现fff,fmf这样的子串。
思路:
一开始暴力,结果超时了,其实这个题目要是能找到类似于斐波那契那样的公式,就可以瞬间用矩阵乘法+快速幂秒掉大数据,现在我们来找公式,我们现在来讨论当前队列的最后一个字母,如果是m那么之前的所有+m都不会冲突,所以有f(n-1)个,如果是f呢?,这个时候我们要考虑不可以出现fff,fmf这样的序列,那么新形成的后缀也就只有mmf,mff可以满足了,mmf前面是什么都可以满足,所以f(n - 3),而mff还得往前找,只有mmff前面是什么都可以,这时是f(n
- 4),所以最终 f(n) = f(n - 1) + f(n - 3) + f(n - 4),接下来就构造矩阵,矩阵的构造也很简单,但是构造的时候别忘了,矩阵没有交换律的。
f(x)f(x+1)f(x+2)f(x+3) * [ 0 0 0 1 ] = f(x+1)f(x+2)f(x+3)f(x+4)
[ 1 0 0 1 ]
[ 0 1 0 0 ]
[ 0 0 1 1 ]
构造完矩阵就可以用矩阵快速幂吊打这道题了。
#include<stdio.h>
#include<string.h>
int MOD; typedef struct
{
int mat[5][5];
}A; A mat_mat(A a ,A b)
{
A c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= 4 ;k ++)
for(int i = 1 ;i <= 4 ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= 4 ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
} A quick_mat(A a ,int b)
{
A c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= 4 ;i ++)
c.mat[i][i] = 1;
while(b)
{
if(b & 1) c = mat_mat(c ,a);
a = mat_mat(a ,a);
b >>= 1;
}
return c;
} int main ()
{
A a ,b;
int n ,num[5];
memset(a.mat ,0 ,sizeof(a.mat));
a.mat[1][4] = a.mat[2][1] = a.mat[2][4] = 1;
a.mat[3][2] = a.mat[4][3] = a.mat[4][4] = 1;
num[0] = 1 ,num[1] = 2 ,num[2] = 4 ,num[3] = 6;
while(~scanf("%d %d" ,&n ,&MOD))
{
if(n <= 3)
{
printf("%d\n" ,num[n] % MOD);
continue;
}
b = quick_mat(a ,n - 3);
int ans = num[0] * b.mat[1][4] + num[1] * b.mat[2][4] + num[2] * b.mat[3][4] + num[3] * b.mat[4][4];
printf("%d\n" ,ans % MOD);
}
return 0;
}
hdu2604 矩阵快速幂的更多相关文章
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵快速幂小结-Hdu2604
矩阵快速幂可以想象为线性代数的矩阵相乘,主要是运用于高效的计算矩阵高次方. 将矩阵两两分组,若要求a^n,即知道a^(n/2)次方即可,矩阵快速幂便是运用的这个思路. 比方想求(A)^7那么(A)^6 ...
- 【递推+矩阵快速幂】【HDU2604】【Queuing】
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU2604【矩阵快速幂】
思路: 把fm看成01,f-1,m-0: 不能存在101,111; dp[i]代表第i结尾的方案数: ①:结尾是0一定行:只要i-1序列里添个0就好了,dp[i]+=dp[i-1]: ②:结尾是1 ...
- HDU2604:Queuing(矩阵快速幂+递推)
传送门 题意 长为len的字符串只由'f','m'构成,有2^len种情况,问在其中不包含'fmf','fff'的字符串有多少个,此处将队列换成字符串 分析 矩阵快速幂写的比较崩,手生了,多练! 用f ...
- HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
随机推荐
- Ubuntu小配置
Ubuntu 拍摄快照 在虚拟机安装好.配置号后各拍摄一次快照,并存储. 可在虚拟机出错后回滚 Root用户 Ubuntu默认不能以 Root用户身份直接登录 因此,正常操作时在需要调用 root权限 ...
- Java入门和环境配置ideaJ安装
Java入门及环境搭建 目录 Java入门及环境搭建 什么是Java Java Java的发展 Java的特性和优势 Java三大版本 JDK JRE JVM JAVA开发环境搭建 安装JDK 卸载J ...
- 使用wireshark 抓取 http https tcp ip 协议进行学习
使用wireshark 抓取 http https tcp ip 协议进行学习 前言 本节使用wireshark工具抓包学习tcp ip http 协议 1. tcp 1.1 tcp三次握手在wire ...
- apicloud打包的ios证书的获取方法
apicloud云编译的时候,需要测试证书或者正式证书进行编译. 那么这个证书是怎么来的呢?通过什么渠道可以获取呢? 这里我介绍下使用香蕉云编这个在线工具来生成: 1.登录香蕉云编,生成证书的csr文 ...
- springboot源码解析-管中窥豹系列之BeanPostProcessor(十二)
一.前言 Springboot源码解析是一件大工程,逐行逐句的去研究代码,会很枯燥,也不容易坚持下去. 我们不追求大而全,而是试着每次去研究一个小知识点,最终聚沙成塔,这就是我们的springboot ...
- Java代码实现热部署
一.思路 0. 监听java文件最后修改时间,如果发生变化,则表示文件已经修改,进行重新编译 1. 编译java文件为 class文件 2. 通过手写类加载器,加载 class文件 ,创建对象 3. ...
- Scrapy 5+1 ——五大坑附送一个小技巧
笔者最近对scrapy的学习可谓如火如荼,虽然但是,即使是一整天地学习下来也会有中间两三个小时的"无效学习",不是笔者开小差,而是掉进了深坑出不来. 在此,给各位分享一下作为一名S ...
- 创建第一个HTML文件
首先右键新建文本文档,然后打开新建的文档,文本内容写上: <html> <head> <title>我的HTML标题</title> </head ...
- jenkins构建maven聚合项目,发布jar包,可配置单独发布某个模块
https://blog.csdn.net/qq_42703181/article/details/109643330
- 201871030116-李小龙 实验二 个人项目—《D{0-1} KP》项目报告
项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs.com/nwnu-dai ...