神经网络与机器学习 笔记—卷积神经网络(CNN)
卷积神经网络
之前的一些都是考虑多层感知器算法设计相关的问题,这次是说一个多层感知器结构布局相关的问题。来总结卷积神经网络。对于模式分类非常合适。网络的提出所隐含的思想收到了神经生物学的启发。
第一个卷积网络是为了识别二维形状而特殊设计的一个多层感知器,这种二维形状对平移、比例缩放、倾斜或者其他形式的变形具有高度不变性。这个艰巨的任务是通过如下网络在监督方式下学会的,网络的结构包括如下形式的约束。
- 特征提取。每一个神经元从上一层的局部接收域得到突触输入,因而迫使它提取局部特征。一旦一个特征被提取出来,只要它相对于其他特征的位置被近似保留下来,他的精确位置就变得没有那么重要了。
- 特征映射。网络的每一个计算层都是由多个特征映射组成的,每个特征映射都是平面形式的,平面中单独的神经元在约束下共享相同的突触权值。这种结构约束的第二种形式具有如下的有益效果:
平移不变性,强迫特征映射的执行使用具有小尺度核的卷积,再接着用一个sigmoid函数。
自由参数数量的减缩,通过权值共享实现。
- 子抽样。每个卷积网层跟着一个实现局部平均和子抽样的计算层,由此特征映射的分辨率降低。这种操作具有使特征映射的输出对平移和其他形式的变形的敏感度下降作用。
注意,在一个卷积网络所有层中的所有权值都是通过训练来学习的。此外,网络自动地学习提取它自身的特征。
用于图像处理如手写识别的卷积网络:
上面是一个由一个输入层和四个隐藏层与一个输出层组成的卷积网络的体系结构布局。这个网络被设计用于实现图像处理(如手写识别)。输入层由28x28个感知节点组成,接收已经近似处于中心位置和在大小上规整化的不同字符的图像。然后,计算流程在卷积和子抽样之间交替:
- 第一隐藏层进行卷积。它由四个特征映射组成,每个特征映射由24x24个神经元组成。每个神经元指定一个5x5的接收域;
- 第二隐藏层实现了子抽样和局部平均。他同样由四个特征映射组成。但其每个特征映射由12x12个神经元组成。每个神经元具有一个2x2的接收域,一个可训练系数,一个可训练偏置和一个sigmoid激活函数。可训练系数和偏置控制神经元的操作点;例如,如果系数很小,该神经元以拟线性方式操作。
- 第三个隐藏层进行第二次卷积。它由12个特征映射组成,每个特征映射由8x8个神经元组成。该隐藏层中的每个神经元可能具有和上一个隐藏层几个特征映射相连的突触连接。否则,它以第一个卷积层相似的方式操作。
- 第四个隐藏层进行第二次子抽样和局部平均计算。它由12个特征映射组成,但每个特征映射由4x4个神经元组成。否则它以第一次抽样相似的方式操作。
- 输出层实现卷积的最后阶段。它由26个神经元组成,每个神经元指定为26个可能的字符中的一个。跟前面一样,每个神经元指定一个4x4的接收域。
相继的计算层在卷积和抽样之间的连续交替,得到一个“双尖塔”的效果。也就是在每个卷积或抽样层,随着空间分辨率下降,与相应的前一层相比特征映射的数量增加。卷积之后进行子抽样的思想是受到H和W首先提出的“简单的”细胞后面跟着“复杂的”细胞的概念启发而产生的。
上面的多层感知器包含近似100000个突触连接,但只有大约2600个自由参数。自由参数在数量上显著减少是通过权值共享实现的。机器学习的能力因而下降,这有提高了它的泛化能力。甚至更值得注意的事实是对自由参数的调整通过反向传播学习的随机形式实现。
另一个显著的特点是使用权值共享使得以并行形式实现卷积网络成为可能。这是卷积网络对完全连接的多层感知器而言的另一个优点。
卷积也说明了两点。首先,通过结合当前任务的先验知识约束其设计,一个可调整大小的多层感知器能够学习一个复杂的、高维的和非线性的映射。其次,突触权值和偏置水平可以周而复始地执行通过训练集的简单反向传播算法进行学习。
神经网络与机器学习 笔记—卷积神经网络(CNN)的更多相关文章
- 神经网络与机器学习 笔记—LMS(最小均方算法)和学习率退火
神经网络与机器学习 笔记-LMS(最小均方算法)和学习率退火 LMS算法和Rosenblatt感知器算法非常想,唯独就是去掉了神经元的压制函数,Rosenblatt用的Sgn压制函数,LMS不需要压制 ...
- 李宏毅机器学习笔记5:CNN卷积神经网络
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- TensorFlow 深度学习笔记 卷积神经网络
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...
- [DeeplearningAI笔记]卷积神经网络3.10候选区域region proposals与R-CNN
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.10 region proposals候选区域与R-CNN 基于滑动窗口的目标检测算法将原始图片分割成小的样本图片,并传入分 ...
- Coursera Deep Learning笔记 卷积神经网络基础
参考1 参考2 1. 计算机视觉 使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大.例如一张64x64x3的图片,神经网络输入层的维度为12288. 如果图片尺寸较大,例如一张1000x10 ...
- [DeeplearningAI笔记]卷积神经网络4.6-4.10神经网络风格迁移
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Cont ...
- [DeeplearningAI笔记]卷积神经网络4.1-4.5 人脸识别/one-shot learning/Siamase网络/Triplet损失/将面部识别转化为二分类问题
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recogniti ...
- [DeeplearningAI笔记]卷积神经网络3.1-3.5目标定位/特征点检测/目标检测/滑动窗口的卷积神经网络实现/YOLO算法
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1目标定位 对象定位localization和目标检测detection 判断图像中的对象是不是汽车--Image clas ...
- [DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点
4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似 ...
随机推荐
- 基于dlib+django+python 实现web端人脸打卡
face_recognition 基于python+django+dlib实现的人脸打卡系统 开始之前 windows用户需要安装 VS2017 其他VS版本也行 linux用户需要安装c++编译器( ...
- 大牛带你学会java类加载机制,不要错过,值得收藏!
很多人对java类加载机制都是非常抗拒的,因为这个太难理解了,但是我们作为一名优秀的java工程师,还是要把java类加载机制研究和学习明白的,因为这对于我们在以后的工作中有很大的帮助,因为它在jav ...
- git的回滚与撤销【reset and revert】
git的工作流程-- 3个区域 工作区:我们可以看到的文件内容 在操作 git add 之前的!! 缓存区:是不可见的 已经git add操作,还没git commit -m "" ...
- 用水浒传来学习OKR
用水浒传来学习OKR 目录 用水浒传来学习OKR 0x00 摘要 0x01 OKR 1.1 基本概念 1.2 OKR管理的意义 1.3 Objective 1.3.1 什么是好的O 1.3.2 上下级 ...
- golang 遍历树状结构
以遍历Block结构为例,Block结构如下: type Block struct { Inside bool Nest int Boundary bool Incise []*Block } 可以看 ...
- 二叉树的建立与遍历(c语言)入门
树其实在本质上就是一对多,链表就是一对一. 二叉树的建立: 这里的代码采用的是最粗暴的创建方法,无实际用处.但初次学习二叉树可以通过这个创建方法更好的理解二叉树. 二叉树的遍历: 遍历在大体上分为递归 ...
- PTA 输出数组元素
7-3 输出数组元素 (15 分) 本题要求编写程序,对顺序读入的n个整数,顺次计算后项减前项之差,并按每行三个元素的格式输出结果. 输入格式: 输入的第一行给出正整数n(1).随后一行给出n个整 ...
- salesforce零基础学习(一百零二)Limitation篇之 CPU Limit
本篇参考: https://help.salesforce.com/articleView?id=000339361&type=1&mode=1 https://developer.s ...
- PHP并发抢购解决方案
Mysql版 逻辑步骤 mysql存储引擎使用Innodb 开始事务,查询商品库存并加上共享锁 判断库存是否足够,进行商品/订单/用户等操作 提交事务,完成下单抢购 代码参考 // 关闭自动提交 $t ...
- 从阿里云迁移分布式redis实例到华为云解决方案(详细)
如果要换多数是经济因素啦- 一. 准备工作 先在华为云上买一台redis数据库,配置一定要注意多数要保持一致,至于4.0还是5.0倒问题不大亲测兼容 可用区要找现有ECS云主机中的相同的机器.记下:这 ...