TVM中的调度原语
TVM中的调度原语
TVM是一种用于高效内核构造的领域专用语言。
本文将展示如何通过TVM提供的各种原语来调度计算。
from __future__ import absolute_import, print_function
import tvm
from tvm import te
import numpy as np
通常存在多种方法来计算相同的结果,但是不同的方法会导致不同的局部性和性能。因此TVM要求用户提供如何执行称为Schedule的计算。
调度是一组计算转换,它转换程序中的计算循环。
# declare some variables for use later
n = te.var("n")
m = te.var("m")
可以从操作列表中创建计划,默认情况下,调度按行主要顺序以串行方式计算张量。
# declare a matrix element-wise multiply
A = te.placeholder((m, n), name="A")
B = te.placeholder((m, n), name="B")
C = te.compute((m, n), lambda i, j: A[i, j] * B[i, j], name="C")
s = te.create_schedule([C.op])
# lower will transform the computation from definition to the real
# callable function. With argument `simple_mode=True`, it will
# return you a readable C like statement, we use it here to print the
# schedule result.
print(tvm.lower(s, [A, B, C], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32, n: int32], [stride: int32, stride_1: int32], type="auto"),
C: Buffer(C_2: Pointer(float32), float32, [m, n], [stride_2: int32, stride_3: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m, n], [stride_4: int32, stride_5: int32], type="auto")}
buffer_map = {A_1: A, B_1: B, C_1: C} {
for (i: int32, 0, m) {
for (j: int32, 0, n) {
C_2[((i*stride_2) + (j*stride_3))] = ((float32*)A_2[((i*stride_4) + (j*stride_5))]*(float32*)B_2[((i*stride) + (j*stride_1))])
}
}
}
一个计划由多个阶段组成,一个阶段代表一个操作的进度。提供各种方法来分派每个阶段。
split分裂
“split拆分”可以按因子factor将指定的轴拆分为两个轴。
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] * 2, name="B")
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=32)
print(tvm.lower(s, [A, B], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32], [stride: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m], [stride_1: int32], type="auto")}
buffer_map = {A_1: A, B_1: B} {
for (i.outer: int32, 0, floordiv((m + 31), 32)) {
for (i.inner: int32, 0, 32) {
if @tir.likely((((i.outer*32) + i.inner) < m), dtype=bool) {
B_2[(((i.outer*32) + i.inner)*stride)] = ((float32*)A_2[(((i.outer*32) + i.inner)*stride_1)]*2f32)
}
}
}
}
也可以按nparts拆分轴,这将与factor相反地拆分轴。
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i], name="B")
s = te.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], nparts=32)
print(tvm.lower(s, [A, B], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32], [stride: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m], [stride_1: int32], type="auto")}
buffer_map = {A_1: A, B_1: B} {
for (i.outer: int32, 0, 32) {
for (i.inner: int32, 0, floordiv((m + 31), 32)) {
if @tir.likely(((i.inner + (i.outer*floordiv((m + 31), 32))) < m), dtype=bool) {
B_2[((i.inner + (i.outer*floordiv((m + 31), 32)))*stride)] = (float32*)A_2[((i.inner + (i.outer*floordiv((m + 31), 32)))*stride_1)]
}
}
}
}
tile
tile help you execute the computation tile by tile over two axises.
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create_schedule(B.op)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
print(tvm.lower(s, [A, B], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32, n: int32], [stride: int32, stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m, n], [stride_2: int32, stride_3: int32], type="auto")}
buffer_map = {A_1: A, B_1: B} {
for (i.outer: int32, 0, floordiv((m + 9), 10)) {
for (j.outer: int32, 0, floordiv((n + 4), 5)) {
for (i.inner: int32, 0, 10) {
if @tir.likely((((i.outer*10) + i.inner) < m), dtype=bool) {
for (j.inner: int32, 0, 5) {
if @tir.likely((((j.outer*5) + j.inner) < n), dtype=bool) {
B_2[((((i.outer*10) + i.inner)*stride) + (((j.outer*5) + j.inner)*stride_1))] = (float32*)A_2[((((i.outer*10) + i.inner)*stride_2) + (((j.outer*5) + j.inner)*stride_3))]
}
}
}
}
}
}
}
fuse¶
fuse can fuse two consecutive axises of one computation.
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create_schedule(B.op)
# tile to four axises first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
# then fuse (i.inner, j.inner) into one axis: (i.inner.j.inner.fused)
fused = s[B].fuse(xi, yi)
print(tvm.lower(s, [A, B], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32, n: int32], [stride: int32, stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m, n], [stride_2: int32, stride_3: int32], type="auto")}
buffer_map = {A_1: A, B_1: B} {
for (i.outer: int32, 0, floordiv((m + 9), 10)) {
for (j.outer: int32, 0, floordiv((n + 4), 5)) {
for (i.inner.j.inner.fused: int32, 0, 50) {
if @tir.likely((((i.outer*10) + floordiv(i.inner.j.inner.fused, 5)) < m), dtype=bool) {
if @tir.likely((((j.outer*5) + floormod(i.inner.j.inner.fused, 5)) < n), dtype=bool) {
B_2[((((i.outer*10) + floordiv(i.inner.j.inner.fused, 5))*stride) + (((j.outer*5) + floormod(i.inner.j.inner.fused, 5))*stride_1))] = (float32*)A_2[((((i.outer*10) + floordiv(i.inner.j.inner.fused, 5))*stride_2) + (((j.outer*5) + floormod(i.inner.j.inner.fused, 5))*stride_3))]
}
}
}
}
}
}
reorder¶
reorder can reorder the axises in the specified order.
A = te.placeholder((m, n), name="A")
B = te.compute((m, n), lambda i, j: A[i, j], name="B")
s = te.create_schedule(B.op)
# tile to four axises first: (i.outer, j.outer, i.inner, j.inner)
xo, yo, xi, yi = s[B].tile(B.op.axis[0], B.op.axis[1], x_factor=10, y_factor=5)
# then reorder the axises: (i.inner, j.outer, i.outer, j.inner)
s[B].reorder(xi, yo, xo, yi)
print(tvm.lower(s, [A, B], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32, n: int32], [stride: int32, stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m, n], [stride_2: int32, stride_3: int32], type="auto")}
buffer_map = {A_1: A, B_1: B} {
for (i.inner: int32, 0, 10) {
for (j.outer: int32, 0, floordiv((n + 4), 5)) {
for (i.outer: int32, 0, floordiv((m + 9), 10)) {
if @tir.likely((((i.outer*10) + i.inner) < m), dtype=bool) {
for (j.inner: int32, 0, 5) {
if @tir.likely((((j.outer*5) + j.inner) < n), dtype=bool) {
B_2[((((i.outer*10) + i.inner)*stride) + (((j.outer*5) + j.inner)*stride_1))] = (float32*)A_2[((((i.outer*10) + i.inner)*stride_2) + (((j.outer*5) + j.inner)*stride_3))]
}
}
}
}
}
}
}
bind
bind can bind a specified axis with a thread axis, often used in gpu programming.
A = te.placeholder((n,), name="A")
B = te.compute(A.shape, lambda i: A[i] * 2, name="B")
s = te.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, te.thread_axis("blockIdx.x"))
s[B].bind(tx, te.thread_axis("threadIdx.x"))
print(tvm.lower(s, [A, B], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [n: int32], [stride: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [n], [stride_1: int32], type="auto")}
buffer_map = {A_1: A, B_1: B} {
attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = floordiv((n + 63), 64);
attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 64;
if @tir.likely((((blockIdx.x*64) + threadIdx.x) < n), dtype=bool) {
B_2[(((blockIdx.x*64) + threadIdx.x)*stride)] = ((float32*)A_2[(((blockIdx.x*64) + threadIdx.x)*stride_1)]*2f32)
}
}
compute_at
For a schedule that consists of multiple operators, TVM will compute tensors at the root separately by default.
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] + 1, name="B")
C = te.compute((m,), lambda i: B[i] * 2, name="C")
s = te.create_schedule(C.op)
print(tvm.lower(s, [A, B, C], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {C: Buffer(C_2: Pointer(float32), float32, [m: int32], [stride: int32], type="auto"),
B: Buffer(B_2: Pointer(float32), float32, [m], [stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m], [stride_2: int32], type="auto")}
buffer_map = {A_1: A, B_1: B, C_1: C} {
for (i: int32, 0, m) {
B_2[(i*stride_1)] = ((float32*)A_2[(i*stride_2)] + 1f32)
}
for (i_1: int32, 0, m) {
C_2[(i_1*stride)] = ((float32*)B_2[(i_1*stride_1)]*2f32)
}
}
compute_at can move computation of B into the first axis of computation of C.
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] + 1, name="B")
C = te.compute((m,), lambda i: B[i] * 2, name="C")
s = te.create_schedule(C.op)
s[B].compute_at(s[C], C.op.axis[0])
print(tvm.lower(s, [A, B, C], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32], [stride: int32], type="auto"),
C: Buffer(C_2: Pointer(float32), float32, [m], [stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m], [stride_2: int32], type="auto")}
buffer_map = {A_1: A, B_1: B, C_1: C} {
for (i: int32, 0, m) {
B_2[(i*stride)] = ((float32*)A_2[(i*stride_2)] + 1f32)
C_2[(i*stride_1)] = ((float32*)B_2[(i*stride)]*2f32)
}
}
compute_inline¶
compute_inline can mark one stage as inline, then the body of computation will be expanded and inserted at the address where the tensor is required.
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] + 1, name="B")
C = te.compute((m,), lambda i: B[i] * 2, name="C")
s = te.create_schedule(C.op)
s[B].compute_inline()
print(tvm.lower(s, [A, B, C], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {C: Buffer(C_2: Pointer(float32), float32, [m: int32], [stride: int32], type="auto"),
B: Buffer(B_2: Pointer(float32), float32, [m], [stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m], [stride_2: int32], type="auto")}
buffer_map = {A_1: A, B_1: B, C_1: C} {
for (i: int32, 0, m) {
C_2[(i*stride)] = (((float32*)A_2[(i*stride_2)] + 1f32)*2f32)
}
}
compute_root¶
compute_root can move computation of one stage to the root.
A = te.placeholder((m,), name="A")
B = te.compute((m,), lambda i: A[i] + 1, name="B")
C = te.compute((m,), lambda i: B[i] * 2, name="C")
s = te.create_schedule(C.op)
s[B].compute_at(s[C], C.op.axis[0])
s[B].compute_root()
print(tvm.lower(s, [A, B, C], simple_mode=True))
Out:
primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {B: Buffer(B_2: Pointer(float32), float32, [m: int32], [stride: int32], type="auto"),
C: Buffer(C_2: Pointer(float32), float32, [m], [stride_1: int32], type="auto"),
A: Buffer(A_2: Pointer(float32), float32, [m], [stride_2: int32], type="auto")}
buffer_map = {A_1: A, B_1: B, C_1: C} {
for (i: int32, 0, m) {
B_2[(i*stride)] = ((float32*)A_2[(i*stride_2)] + 1f32)
}
for (i_1: int32, 0, m) {
C_2[(i_1*stride_1)] = ((float32*)B_2[(i_1*stride)]*2f32)
}
}
Summary
本文介绍tvm中的调度原语,它允许用户轻松灵活地调度计算。
为了获得性能良好的内核实现,一般的工作流程通常是:
通过一系列的运算来描述计算。
尝试用基元来调度计算。
编译并运行以查看性能差异。
根据运行结果调整你的日程安排。
下载Python源代码:schedule_primitives.py
下载Jupyter笔记本:schedule_primitives.ipynb
TVM中的调度原语的更多相关文章
- OS中处理机调度模型和调度算法
OS中处理机调度模型和调度算法 调度层次 1.1. 高级调度(长程调度,作业调度) 功能:依据某种算法.把在外存队列上处于后备队列的那些作业调入内存.以作业为操做对象. 作业:比程序更为广泛的概念,不 ...
- 自主数据类型:在TVM中启用自定义数据类型探索
自主数据类型:在TVM中启用自定义数据类型探索 介绍 在设计加速器时,一个重要的决定是如何在硬件中近似地表示实数.这个问题有一个长期的行业标准解决方案:IEEE 754浮点标准.1.然而,当试图通过构 ...
- Spring中Quartz调度器的使用
一.Quartz的特点 * 按作业类的继承方式来分,主要有以下两种: 1.作业类继承org.springframework.scheduling.quartz.QuartzJobBean类的方式 2. ...
- RxSwift 中的调度器
与 ReactiveCocoa 相比,Rx 的一大优势就是更丰富的并发模型.提到并发,就不得不提多线程.在 RxSwift 中,与线程对应的概念就是调度器,本文就调度器做些介绍,包括并发调度器.串行调 ...
- DLPack构建跨框架的深度学习编译器
DLPack构建跨框架的深度学习编译器 Tensorflow,PyTorch和ApacheMxNet等深度学习框架提供了一个功能强大的工具包,可用于快速进行原型设计和部署深度学习模型.易用性通常是以碎 ...
- TVM自动调度器
TVM自动调度器 随着模型大小,算子多样性和硬件异构性的不断增长,优化深度神经网络的执行速度非常困难.从计算的角度来看,深度神经网络只是张量计算的一层又一层.这些张量计算(例如matmul和conv2 ...
- 在指定时间干,必须干(kbmmw 中的事件调度)
从去年开始,kbmmw 慢慢增加内涵,除了完善各种服务外,陆续增加和扩展了作为一个中间件必须有的功能, 例如,权限管理.日志系统.调度系统.内存调试等功能. 今天给大家介绍一下kbmmw 的调度事件, ...
- 利刃 MVVMLight 8:DispatchHelper在多线程和调度中的使用
在应用程序中,线程可以被看做是应用程序的一个较小的执行单位.每个应用程序都至少拥有一个线程,我们称为主线程,这是在启动时调用应用程序的主方法时由操作系统分配启动的线程. 当调用和操作主线程的时候,该操 ...
- 在linux系统中I/O 调度的选择
I/O 调度算法再各个进程竞争磁盘I/O的时候担当了裁判的角色.他要求请求的次序和时机做最优化的处理,以求得尽可能最好的整体I/O性能. 在linux下面列出4种调度算法 CFQ (Compl ...
随机推荐
- hdu1287 破译密码
题意: 破译密码 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- DexClassLoader动态加载分析
转载自:http://www.blogfshare.com/dexclassloader.html 看到原来有把原始的dex文件加密保存,然后解密后使用DexClassLoader加载文件的方法,就来 ...
- hdu4966 最小树形图(最少辅导花费)
题意: 以一些科目,和辅导班,每个科目最终要求修到某个等级,可以花一定的钱在辅导班把某一科目修到某一等级,进入辅导班的时候会有一个限制,那就是达到他给出的科目和等级限制,比如a b c d ...
- hdu4932 小贪心
题意: 给了一些处在x轴上的点,要求我们用长度相等的线段覆盖所有点,线段和线段之间不能重叠,问线段最长可以使多长. 思路: 一开始一直在想二分,哎!感觉这个题目很容易就往二分上去 ...
- PhotoShop 第一课 功能认识
功能认识 1.基本界面 可以对各工具栏进行编辑,对工具/栏目进行勾选添加和整合并搭建自己的专属操作页面. 2.画布设置 拍照或者画画都需要一个东西来呈现这个东西叫做画布(可以通过导航栏-文件-新建画布 ...
- 前端小白的学习之路html与css的较量【一】
html和css的较量 web结构的组成 html标签规则 快速生成一个html html的基本结构 标签的关系 标签 标题标签 段落 图片 超链接 a 属性 a标签里面的值 字符实体 新增的标签 1 ...
- JVM默认内存大小
堆(Heap)和非堆(Non-heap)内存 按照官方的说法:"Java虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配.堆是在Java虚拟机启动时创建的." ...
- 关于调试器中int3断点引发异常的思考
INT3断点 INT3断点是利用0Xcc指令实现的,cpu在执行0xcc指令时会引发断点异常调试器会捕捉这个异常. INT3断点引发的异常属于陷阱型异常,在执行完0xcc指令后eip指向下一条指令.但 ...
- mysqldump中skip-tz-utc参数介绍
前言: 在前面文章中,有提到过 mysqldump 备份文件中记录的时间戳数据都是以 UTC 时区为基础的,在筛选恢复单库或单表时要注意时区差别.后来再次查看文档,发现 tz-utc.skip-tz- ...
- unbuntu下清理磁盘空间
把很多大文件删除,并清空回收站后,发现可用存储空间并没增大,如图: 用find /home -size +500k 过滤出大于500k bytes的文件,发现原来删除的yuv文件都被置于.cache目 ...