TensorRT开源软件

此存储库包含NVIDIA TensorRT的开源软件(OSS)组件。其中包括TensorRT插件和解析器(Caffe和ONNX)的源代码,以及演示TensorRT平台使用和功能的示例应用程序。这些开源软件组件是TensorRT General Availability(GA)发行版的一个子集,其中包含一些扩展和错误修复。

对于TensorRT OSS的代码贡献,请参阅我们的贡献指南和编码指南。

有关TensorRT OSS发行版附带的新添加和更新的摘要,请参阅变更日志。

Build

Prerequistites

要构建TensorRT OSS组件,首先需要以下软件包。

参考链接:https://github.com/NVIDIA/TensorRT

TensorRT GA build

System Packages

Optional Packages

NOTE: onnx-tensorrt, cub, and protobuf packages are downloaded along with TensorRT OSS, and not required to be installed.

Downloading TensorRT Build

1.   Download TensorRT OSS

On Linux: Bash

git clone -b master https://github.com/nvidia/TensorRT TensorRT
cd TensorRT
git submodule update --init --recursive
export TRT_SOURCE=`pwd`

On Windows: Powershell

git clone -b master https://github.com/nvidia/TensorRT TensorRT
cd TensorRT
git submodule update --init --recursive
$Env:TRT_SOURCE = $(Get-Location)

2.   Download TensorRT GA

To build TensorRT OSS, obtain the corresponding TensorRT GA build from NVIDIA Developer Zone.

Example: Ubuntu 18.04 on x86-64 with cuda-11.1

Download and extract the latest TensorRT 7.2.1 GA package for Ubuntu 18.04 and CUDA 11.1

cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz
export TRT_RELEASE=`pwd`/TensorRT-7.2.1.6

Example: Ubuntu 18.04 on PowerPC with cuda-11.0

Download and extract the latest TensorRT 7.2.1 GA package for Ubuntu 18.04 and CUDA 11.0

cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-18.04.powerpc64le-gnu.cuda-11.0.cudnn8.0.tar.gz
export TRT_RELEASE=`pwd`/TensorRT-7.2.1.6

Example: CentOS/RedHat 7 on x86-64 with cuda-11.0

Download and extract the TensorRT 7.2.1 GA for CentOS/RedHat 7 and CUDA 11.0 tar package

cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.CentOS-7.6.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz
export TRT_RELEASE=`pwd`/TensorRT-7.2.1.6

Example: Ubuntu18.04 Cross-Compile for QNX with cuda-10.2

Download and extract the TensorRT 7.2.1 GA for QNX and CUDA 10.2 tar package

cd ~/Downloads
tar -xvzf TensorRT-7.2.1.6.Ubuntu-18.04.aarch64-qnx.cuda-10.2.cudnn7.6.tar.gz
export TRT_RELEASE=`pwd`/TensorRT-7.2.1.6
export QNX_HOST=/<path-to-qnx-toolchain>/host/linux/x86_64
export QNX_TARGET=/<path-to-qnx-toolchain>/target/qnx7

Example: Windows on x86-64 with cuda-11.0

Download and extract the TensorRT 7.2.1 GA for Windows and CUDA 11.0 zip package and add msbuild to PATH

cd ~\Downloads
Expand-Archive .\TensorRT-7.2.1.6.Windows10.x86_64.cuda-11.0.cudnn8.0.zip
$Env:TRT_RELEASE = '$(Get-Location)\TensorRT-7.2.1.6'
$Env:PATH += 'C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\MSBuild\15.0\Bin\'

3.   (Optional) JetPack SDK for Jetson builds

Using the JetPack SDK manager, download the host components. Steps:

i.         Download and launch the SDK manager. Login with your developer account.

ii.         Select the platform and target OS (example: Jetson AGX Xavier, Linux Jetpack 4.4), and click Continue.

iii.         Under Download & Install Options change the download folder and select Download now, Install later. Agree to the license terms and click Continue.

iv.         Move the extracted files into the $TRT_SOURCE/docker/jetpack_files folder.

Setting Up The Build Environment

For native builds, install the prerequisite System Packages. Alternatively (recommended for non-Windows builds), install Docker and generate a build container as described below:

1.    Generate the TensorRT-OSS build container.

The TensorRT-OSS build container can be generated using the Dockerfiles and build script included with TensorRT-OSS. The build container is bundled with packages and environment required for building TensorRT OSS.

Example: Ubuntu 18.04 on x86-64 with cuda-11.1

./docker/build.sh --file docker/ubuntu.Dockerfile --tag tensorrt-ubuntu --os 18.04 --cuda 11.1

Example: Ubuntu 18.04 on PowerPC with cuda-11.0

./docker/build.sh --file docker/ubuntu-cross-ppc64le.Dockerfile --tag tensorrt-ubuntu-ppc --os 18.04 --cuda 11.0

Example: CentOS/RedHat 7 on x86-64 with cuda-11.0

./docker/build.sh --file docker/centos.Dockerfile --tag tensorrt-centos --os 7 --cuda 11.0

Example: Ubuntu 18.04 Cross-Compile for Jetson (arm64) with cuda-10.2 (JetPack)

./docker/build.sh --file docker/ubuntu-cross-aarch64.Dockerfile --tag tensorrt-cross-jetpack --os 18.04 --cuda 10.2

2.   Launch the TensorRT-OSS build container.

Example: Ubuntu 18.04 build container

./docker/launch.sh --tag tensorrt-ubuntu --gpus all --release $TRT_RELEASE --source $TRT_SOURCE

NOTE:

  1. i.         Use the tag corresponding to the build container you generated in
  2. ii.         To run TensorRT/CUDA programs in the build container, install NVIDIA Container Toolkit. Docker versions < 19.03 require nvidia-docker2 and --runtime=nvidia flag for docker run commands. On versions >= 19.03, you need the nvidia-container-toolkit package and --gpus all flag.

Building TensorRT-OSS

  • Generate Makefiles or VS project (Windows) and build.

Example: Linux (x86-64) build with default cuda-11.1

 cd $TRT_SOURCE
 mkdir -p build && cd build
 cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out
 make -j$(nproc)

Example: Native build on Jetson (arm64) with cuda-10.2

cd $TRT_SOURCE
mkdir -p build && cd build
cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out -DTRT_PLATFORM_ID=aarch64 -DCUDA_VERSION=10.2
make -j$(nproc)

Example: Ubuntu 18.04 Cross-Compile for Jetson (arm64) with cuda-10.2 (JetPack)

 cd $TRT_SOURCE
 mkdir -p build && cd build
 cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out -DCMAKE_TOOLCHAIN_FILE=$TRT_SOURCE/cmake/toolchains/cmake_aarch64.toolchain -DCUDA_VERSION=10.2
 make -j$(nproc)

Example: Cross-Compile for QNX with cuda-10.2

 cd $TRT_SOURCE
 mkdir -p build && cd build
 cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out -DCMAKE_TOOLCHAIN_FILE=$TRT_SOURCE/cmake/toolchains/cmake_qnx.toolchain -DCUDA_VERSION=10.2
 make -j$(nproc)

Example: Windows (x86-64) build in Powershell

 cd $Env:TRT_SOURCE
 mkdir -p build ; cd build
 cmake .. -DTRT_LIB_DIR=$Env:TRT_RELEASE\lib -DTRT_OUT_DIR='$(Get-Location)\out' -DCMAKE_TOOLCHAIN_FILE=..\cmake\toolchains\cmake_x64_win.toolchain
 msbuild ALL_BUILD.vcxproj

NOTE:

    1. The default CUDA version used by CMake is 11.1. To override this, for example to 10.2, append -DCUDA_VERSION=10.2 to the cmake command.
    2. If samples fail to link on CentOS7, create this symbolic link: ln -s $TRT_OUT_DIR/libnvinfer_plugin.so $TRT_OUT_DIR/libnvinfer_plugin.so.7
  • Required CMake build arguments are:
  • Optional CMake build arguments:
  • The TensorRT python API bindings must be installed for running TensorRT python applications
    • TRT_LIB_DIR: Path to the TensorRT installation directory containing libraries.
    • TRT_OUT_DIR: Output directory where generated build artifacts will be copied.
    • CMAKE_BUILD_TYPE: Specify if binaries generated are for release or debug (contain debug symbols). Values consists of [Release] | Debug
    • CUDA_VERISON: The version of CUDA to target, for example [11.1].
    • CUDNN_VERSION: The version of cuDNN to target, for example [8.0].
    • NVCR_SUFFIX: Optional nvcr/cuda image suffix. Set to "-rc" for CUDA11 RC builds until general availability. Blank by default.
    • PROTOBUF_VERSION: The version of Protobuf to use, for example [3.0.0]. Note: Changing this will not configure CMake to use a system version of Protobuf, it will configure CMake to download and try building that version.
    • CMAKE_TOOLCHAIN_FILE: The path to a toolchain file for cross compilation.
    • BUILD_PARSERS: Specify if the parsers should be built, for example [ON] | OFF. If turned OFF, CMake will try to find precompiled versions of the parser libraries to use in compiling samples. First in ${TRT_LIB_DIR}, then on the system. If the build type is Debug, then it will prefer debug builds of the libraries before release versions if available.
    • BUILD_PLUGINS: Specify if the plugins should be built, for example [ON] | OFF. If turned OFF, CMake will try to find a precompiled version of the plugin library to use in compiling samples. First in ${TRT_LIB_DIR}, then on the system. If the build type is Debug, then it will prefer debug builds of the libraries before release versions if available.
    • BUILD_SAMPLES: Specify if the samples should be built, for example [ON] | OFF.
    • CUB_VERSION: The version of CUB to use, for example [1.8.0].
    • GPU_ARCHS: GPU (SM) architectures to target. By default we generate CUDA code for all major SMs. Specific SM versions can be specified here as a quoted space-separated list to reduce compilation time and binary size. Table of compute capabilities of NVIDIA GPUs can be found here. Examples:
      • NVidia A100: -DGPU_ARCHS="80"
      • Tesla T4, GeForce RTX 2080: -DGPU_ARCHS="75"
      • Titan V, Tesla V100: -DGPU_ARCHS="70"
      • Multiple SMs: -DGPU_ARCHS="80 75"
    • TRT_PLATFORM_ID: Bare-metal build (unlike containerized cross-compilation) on non Linux/x86 platforms must explicitly specify the target platform. Currently supported options: x86_64 (default), aarch64

(Optional) Install TensorRT python bindings

Example: install TensorRT wheel for python 3.6

pip3 install $TRT_RELEASE/python/tensorrt-7.2.1.6-cp36-none-linux_x86_64.whl

References

TensorRT Resources

Known Issues

TensorRT 7.2.1

  • None

Nvidia TensorRT开源软件的更多相关文章

  1. NVIDIA TensorRT:可编程推理加速器

    NVIDIA TensorRT:可编程推理加速器 一.概述 NVIDIA TensorRT是一个用于高性能深度学习推理的SDK.它包括一个深度学习推理优化器和运行时间,为深度学习推理应用程序提供低延迟 ...

  2. NVIDIA TensorRT高性能深度学习推理

    NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高 ...

  3. spring boot 实战:我们的第一款开源软件

    在信息爆炸时代,如何避免持续性信息过剩,使自己变得专注而不是被纷繁的信息所累?每天会看到各种各样的新闻,各种新潮的技术层出不穷,如何筛选出自己所关心的? 各位看官会想,我们是来看开源软件的,你给我扯什 ...

  4. 2014 年最热门的国人开发开源软件 TOP 100 - 开源中国社区

    不知道从什么时候开始,很多一说起国产好像就非常愤慨,其实大可不必.做开源中国六年有余,这六年时间国内的开源蓬勃发展,从一开始的使用到贡献,到推出自己很多的开源软件,而且还有很多软件被国外的认可.中国是 ...

  5. 2014 年最热门的国人开发开源软件TOP 100

    不知道从什么时候开始,很多一说起国产好像就非常愤慨,其实大可不必.做开源中国六年有余,这六年时间国内的开源蓬勃发展,从一开始的使用到贡献,到推出自己很多的开源软件,而且还有很多软件被国外认可.中国是开 ...

  6. 号外:MS被开源软件打败了!

    [编辑推荐]微软宣布.NET将开源 支持Mac OS X和Linux (149/16525) » [最多推荐]Visual Studio Contact(); 直播笔记(44/2744) » [最多评 ...

  7. 利用开源软件strongSwan实现支持IKEv2的企业级IPsec VPN,并结合FreeRadius实现AAA协议(下篇)

    续篇—— 利用开源软件strongSwan实现支持IKEv2的企业级IPsec VPN,并结合FreeRadius实现AAA协议(上篇) 上篇文章写了如何构建一个支持IKEv2的VPN,本篇记录的是如 ...

  8. 2014年国人开发的最热门的开源软件TOP 100

    不知道从什么时候开始,很多一说起国产好像就非常愤慨,其实大可不必.做开源中国六年有余,这六年时间国内的开源蓬勃发展,从一开始的使用到贡献,到推出自己很多的开源软件,而且还有很多软件被国外的认可.中国是 ...

  9. GIS开源软件大全

    3 - F 3map:行星地球项目由3map驱动,这是一个自由软件,由Telstra宽带基金会创建并支持,提供客户端与服务器的能力以在线再现虚拟地球. Amein!:其界面介于ArcMap和UMN M ...

随机推荐

  1. hdu1960 最小路径覆盖

    题意:       给你明天的出租车订单,订单中包含每个人的起点和终点坐标,还有时间,如果一辆出租车想接一个乘客必须在每个订单前1分钟到达,也就是小于等于time-1,问你完成所有订单要最少多少量出租 ...

  2. hdu2492 数状数组或者线段树

    题意:      给你一些人,每个人有自己的攻击力,输入的顺序就是每个人的顺序,他们之间互相比赛,两个人比赛的条件是必须在他们两个位置之间找到一个人当裁判,这个裁判的攻击力必须在他们两个人之间,问你最 ...

  3. Run-Time Check Failure #0,The value of ESP was not properly saved 错误解决

    调用DLL函数,出现错误 Run-Time Check Failure #0 - The value of ESP was not properly saved across a function c ...

  4. Intel汇编语言程序设计学习-第三章 汇编语言基础-中

    3.2  例子:整数相加减 现在来看一个进行整数加减操作的汇编语言小程序.寄存器用于存放中间数据,我们调用一个库函数在屏幕上显示寄存器的内容.下面是程序的源码: TITLE Add and Subtr ...

  5. intellij idea的Maven项目运行报程序包找不到的错误

    概括一句话:IDEA的Terminal命令行输入mvn idea:idea或者mvn idea:module , 即可解决 重做过开发环境后在intellij idea中载入java工程,通过mave ...

  6. aspnetcore 应用 接入Keycloak快速上手指南

    登录及身份认证是现代web应用最基本的功能之一,对于企业内部的系统,多个系统往往希望有一套SSO服务对企业用户的登录及身份认证进行统一的管理,提升用户同时使用多个系统的体验,Keycloak正是为此种 ...

  7. React 代码共享最佳实践方式

    任何一个项目发展到一定复杂性的时候,必然会面临逻辑复用的问题.在React中实现逻辑复用通常有以下几种方式:Mixin.高阶组件(HOC).修饰器(decorator).Render Props.Ho ...

  8. Govern Service 基于 Redis 的服务治理平台

    Govern Service 基于 Redis 的服务治理平台(服务注册/发现 & 配置中心) Govern Service 是一个轻量级.低成本的服务注册.服务发现. 配置服务 SDK,通过 ...

  9. 19 常用API

    API 什么是API? API (Application Programming Interface) :应用程序编程接口 简单来说:就是Java帮我们已经写好的一些方法,我们直接拿过来用就可以了 1 ...

  10. [DB] Spark Core (2)

    RDD WordCount处理流程 sc.textFile("/root/temp/data.txt").flatMap(_.split(" ")).map(( ...