我们定义链树为:在该树上的任意节点,左右子树大小的最小值小于2.

举个例子:

那么我们思考,链树显然可以在叶子节点任意替换成其他子树。

那么在主链上,我们可以做到生成任意深度大于主链长度的树。

反过来,一颗任意的树则无法做到,即当一颗树可以生成时,一定有对应的链树存在。

那么我们只在所有树里判断链树即可。

那么我们思考链树有几种状态:

只有右节点

只有左节点

有一个左叶子节点,当前主链为右链。

有一个右叶子节点,当前主链为左链。

我们发现,四种状态的链树,不能互相转换,缺少一种则会存在无限个该形态链树被无法生成。

我们只需要把所有链树合并,维护一颗四叉树并判断即可。

#include<iostream>
#include<cstdio>
#define ll long long
#define N 200005 ll n,m,T,cnt;
int rt;
int ls[N],rs[N],ok[N],chd[N][4]; inline int leaf(int x){
return x != 0 && (ls[x] == 0 ) && (rs[x] == 0);
} int check(int x){
if(x == 0 || leaf(x))
return 1;
return (check(ls[x])==0&&check(rs[x])==0)? 0:1;
} inline void merge(int &now,int x){
if(now == 0)
now = ++cnt;
if(leaf(x)){
ok[now] = 1;
return ;
}
if(leaf(ls[x]) && leaf(rs[x])){
merge(chd[now][2],ls[x]);
merge(chd[now][3],rs[x]);
return ;
}
if(ls[x] == 0)
merge(chd[now][1],rs[x]);
if(rs[x] == 0)
merge(chd[now][0],ls[x]);
if(rs[x] && leaf(ls[x]))
merge(chd[now][3],rs[x]);
if(ls[x] && leaf(rs[x]))
merge(chd[now][2],ls[x]);
} inline bool grow(int x){
if(x == 0)
return 0;
if(ok[x] == 1)
return 1;
return grow(chd[x][0]) && grow(chd[x][1]) && grow(chd[x][2]) && grow(chd[x][3]);
} int main(){
scanf("%lld",&T);
while(T -- ){
scanf("%lld",&m);
for(int i = 1;i <= m;++i){
scanf("%lld",&n);
for(int j = 1;j <= n;++j){
scanf("%d%d",&ls[j],&rs[j]);
}
if(check(1) == 0)
continue;
merge(rt,1);
}
if(!grow(1))
puts("No");
else
puts("Almost Complete");
for(int i = 1;i <= cnt;++i)
chd[i][0] = chd[i][1] = chd[i][2] = chd[i][3] = ok[i] = 0;
rt = cnt = 0;
}
return 0;
}

[NOI2020] 超现实树的更多相关文章

  1. 洛谷 P6776 - [NOI2020] 超现实树(找性质,神仙题)

    洛谷题面传送门 nb tea 一道! 首先考虑怎样入手分析这个看似非常不可做的问题.首先题目涉及高度无穷的树,根本枚举不了.不过我们冷静一下就会发现,如果我们记 \(mx=\max\limits_{i ...

  2. [loj3343]超现实树

    定义1:两棵树中的$x$和$y$对应当且仅当$x$到根的链与$y$到根的链同构 定义2:$x$和$y$的儿子状态相同当且仅当$x$与儿子所构成的树与$y$与儿子所构成的树同构 根据题中所给的定义,有以 ...

  3. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

  4. NOI2020网上同步赛 游记

    Day1 预计得分:\(32pts\)(我裂开了--) T1 美食家 表示考试的时候想到了关于矩阵快速幂的想法,甚至连分段后怎么处理都想好了,但是没有想到拆点,还有不知道怎么处理重边(这个考虑是多余的 ...

  5. NOI2020 同步赛划水记

    因为太菜了没去现场参加 NOI 就算去了估计也只能混个Fe(雾) "两天都会各有一道签到题,争取拿到70分.剩下的题每道题打30分暴力.每天130分,就能稳拿Ag了."--ls D ...

  6. WC2021 云划水记

    Day -38 - 2459208(2020.12.24) CCF 发公告了,线上举办 hopping. 刚看到还纠结了一会儿,但想想还是报了.虽说是去摸鱼,打打暴力分就走人.但毕竟有牌和没牌也是不一 ...

  7. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  8. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  9. ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单

    前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...

随机推荐

  1. Markdown Syntax Images

    Markdown Syntax Images Admittedly, it's fairly difficult to devise a "natural" syntax for ...

  2. perl 不支持多条件比较

    perl 不支持多条件比较,if(a < $var < b),这个条件表达式在C语言里面是支持的,但是在Perl中必须写成if(($var > a)&&($var & ...

  3. Java:NIO 学习笔记-2

    Java:NIO 学习笔记-2 上一篇 NIO 学习笔记-1 看了 尚硅谷 的相应教程,此处又对比看了 黑马程序员 的课程 JAVA通信架构I/O模式,做了相应的笔记 前言 在 Java 的软件设计开 ...

  4. 关于QGIS的插件开发(C++)

    关于C++插件的开发材料较少,根据网上的指导,我采用了早期版本的插件模板生成的方法来创建QGIS的插件,其方法是从以前版本(2.18.25)里面拷贝插件模板的方法进行,具体的执行步骤为 1.拷贝文件 ...

  5. shell脚本自学笔记

    一. 什么是Shell脚本 shell脚本并不能作为正式的编程语言,因为它是在linux的shell中运行的,所以称为shell脚本.事实上,shell脚本就是一些命令的集合. 假如完成某个需求需要一 ...

  6. JVM:Java内存区域与内存溢出异常

    Java 虚拟机在执行 Java 程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创建和销毁时间,有些区域随着虚拟机进程的启动而存在,有些区域依赖用户线程的启动和 ...

  7. Bzoj通过5题纪念

    我A了五题啦!!!

  8. 虚拟化与kvm

    cpu指令级别 传统中操作系统运行于R0中称之为特权级别,直接与硬件进行交互. 应用程序运行于r3级别称之为低权限,无法与硬件直接进行交互.也就是说程序是运行于用户态,系统运行于内核态中. 虚拟化要解 ...

  9. [python]RobotFramework自定义库实现UI自动化

    1.安装教程 环境搭建不多说,网上资料一大堆,可参考https://www.cnblogs.com/puresoul/p/3854963.html,写的比较详细,值得推荐.目前python3是不支持r ...

  10. RabbitMQ(六)消息幂等性处理

    一.springboot整合rabbitmq 我们需要新建两个工程,一个作为生产者,另一个作为消费者.在pom.xml中添加amqp依赖: <dependency> <groupId ...