题意:

①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ;
  ②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ;
  ③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ;
  ④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数);
  ⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。
  例如:序列S={2,1,3,4} ,其中d=1;
  可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。

  当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?

思路:

DP的思想,但是只能想到N^2的算法。嘿嘿正好题目有说(0<=Ai<=10^5),那就是了,用线段树保存最值。

每次做题都要考虑周全,边界什么的,,

d=0时单独用贪心的方法算,其实不用也可以,。

代码:

int const N = 100005;

int a[N], f[N];
int F[N<<2];
int n,d; void PushUp(int rt){
F[rt]=max( F[rt<<1],F[rt<<1|1] );
return;
} void build(int l,int r,int rt){
if(l==r){
F[rt]=0;
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
PushUp(rt);
} void update(int pos,int x,int l,int r,int rt){
if(l==r){
F[rt]=max( F[rt],x );
return;
}
int m=(l+r)>>1;
if(pos<=m)
update(pos,x,lson);
else
update(pos,x,rson);
PushUp(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l && r<=R){
return F[rt];
}
int m=(l+r)>>1;
int res=0;
if(L<=m)
res=max( res,query(L,R,lson) );
if(m<R)
res=max( res,query(L,R,rson) );
return res;
} int proc1(){
int d[N];
int cn=0;
d[0]=-1; rep(i,1,n){
if(a[i]>d[cn]){
d[++cn]=a[i];
}else{
int pos=lower_bound(d+1,d+1+cn,a[i])-d;
d[pos]=a[i];
}
}
return cn;
} int main(){ while(scanf("%d%d",&n,&d)!=EOF){ int es=-inf; rep(i,1,n){
scanf("%d",&a[i]);
es=max( es,a[i] );
} if(d==0){
int ans=proc1();
printf("%d\n",ans);
}else{
build(0,es,1);
int ans=1; rep(i,1,n){
if(i-d-1<=0){
f[i]=1;
}else{
update(a[i-d-1],f[i-d-1],0,es,1); //pos,x,l,r,rt
if(a[i]==0){
f[i]=1;
continue;
}
int t=query(0,a[i]-1,0,es,1); //L,R,l,r,rt
f[i]=t+1;
ans=max( ans,f[i] );
}
}
printf("%d\n",ans);
}
} return 0;
}

hdu 4521 小明序列(线段树,DP思想)的更多相关文章

  1. hdu 4521 小明系列问题——小明序列(线段树+DP或扩展成经典的LIS)

    小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  2. hdu 4521 小明系列问题——小明序列 线段树+二分

    小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Pro ...

  3. HDU 4521 小明系列问题——小明序列 (线段树维护DP)

    题目地址:HDU 4521 基本思路是DP.找前面数的最大值时能够用线段树来维护节省时间. 因为间隔要大于d. 所以能够用一个队列来延迟更新,来保证每次询问到的都是d个之前的. 代码例如以下: #in ...

  4. hdu 4521 小明系列问题——小明序列 线段树

    题意: 给你一个长度为n的序列v,你需要输出最长上升子序列,且要保证你选的两个相邻元素之间在原数组中的位置之差大于d 题解: 这个就是原来求最长上升子序列的加强版,这个思路和最长上升子序列的差不多   ...

  5. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  6. HDU 4521 小明系列问题——小明序列 (线段树 单点更新)

    题目连接 Problem Description 大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了.可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来 ...

  7. hdu 4521 小明系列问题——小明序列(线段树 or DP)

    题目链接:hdu 4521 本是 dp 的变形,却能用线段树,感觉好强大. 由于 n 有 10^5,用普通的 dp,算法时间复杂度为 O(n2),肯定会超时.所以用线段树进行优化.线段树维护的是区间内 ...

  8. 【Foreign】划分序列 [线段树][DP]

    划分序列 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 9 4 ...

  9. HDU 4719Oh My Holy FFF 线段树+DP

    /* ** 日期: 2013-9-12 ** 题目大意:有n个数,划分为多个部分,假设M份,每份不能多于L个.每个数有一个h[i], ** 每份最右边的那个数要大于前一份最右边的那个数.设每份最右边的 ...

随机推荐

  1. Elasticsearch(ES)的高级搜索(DSL搜索)(上篇)

    1. 概述 之前聊了一下 Elasticsearch(ES)的基本使用,今天我们聊聊 Elasticsearch(ES)的高级搜索(DSL搜索),由于DSL搜索内容比较多,因此分为两篇文章完成. 2. ...

  2. python刷题第四周

    本周有所收获的题目: 第一题: 第4章-17 水仙花数(20 分) (20 分) 水仙花数是指一个N位正整数(N≥3),它的每个位上的数字的N次幂之和等于它本身. 例如:153=1×1×1+5×5×5 ...

  3. windows10 升级并安装配置 jmeter5.3

    一.安装配置JDK Jmeter5.3依赖JDK1.8+版本,JDK安装百度搜索JAVA下载JDK,地址:https://www.oracle.com/technetwork/java/javase/ ...

  4. nginx rewrite重写规则集合

    本文根据网络搜索整理,不是原创 一.正则表达式匹配,其中: ~ 为区分大小写匹配 ~* 为不区分大小写匹配 !~和!~* 分别为区分大小写不匹配及不区分大小写不匹配 . 匹配除换行符以外的任意字符 \ ...

  5. npm卸载appium,重新安装桌面版appium

    大家好,appium环境搭建的时候,我选的是使用npm安装appium,但我在使用过程中,发现这样安装的appium没有界面,都是需要通过命令行操作,对于我来说,有点吃力.最后,还是觉得初学就先用桌面 ...

  6. Loj#6503-「雅礼集训 2018 Day4」Magic【分治NTT】

    正题 题目链接:https://loj.ac/p/6503 题目大意 \(n\)张卡\(m\)种,第\(i\)种卡有\(a_i\)张,求所有排列中有\(k\)对相邻且相同的卡牌. \(1\leq n\ ...

  7. 📝 没 2 年 React Native 开发经验,你都遇不到这些坑

    如果你喜欢我的文章,希望点赞 收藏 评论 三连支持一下,谢谢你,这对我真的很重要! React Native 开发时,如果只是写些简单的页面,基本上按着官方文档 reactnative.dev就能写出 ...

  8. ASP.NET Core中将Json字符串转换为JsonResult

    ASP.NET Core中返回JsonResult 最近在使用NET 5.0做WebApi中,发现只能返回string类型,不能用JsonResult返回实体,于是查阅资料找到解决办法. 两种方式分别 ...

  9. 写学习abcde的简单AI(C++实现)

    #include <iostream> #include <time.h> #include <stdlib.h> #include <cmath> u ...

  10. 利用ps在光污染地图上寻找最近的观星地区

    城市灯光对于天文观测和天文摄影是有害的,进行这两类活动之前应提前规划地点,下面是笔者尝试的一种利用ps在光污染地图上进行规划的方法. 目前大部分的光污染地图都是基于WA 2015绘制的,可以结合VII ...