对答案序列求一个高维后缀和,再通过差分将其解出,后者复杂度为$o(n2^{n})$

对于求后缀和后的结果,即01序列仅要求1处有边(不要求0处没有边),那么也即要求将原图划分为若干条长度给定且没有公共点的链

不妨先去枚举链的长度,假设为$\{l_{1},l_{2},...,l_{m}\}$,要求满足$l_{1}\le l_{2}\le ...\le l_{m}$且$\sum_{i=1}^{m}l_{i}=n$,记其对应的方案数为$P(n)$即为A000041,也即有$P(18)=385$

下面,问题即要求出对应的方案数,并加到需要贡献的状态上——

状压dp求出$f_{S}$表示$S$中的点构成链的排列数,时间复杂度为$o(n^{2}2^{n})$

构造$g_{i,S}=\begin{cases}0&(|S|\ne i)\\f_{S}&(|S|=i)\end{cases}$,不难发现方案数即为$(\bigcirc_{i=1}^{m}g_{l_{i}})_{V}$(其中$\circ$为或卷积,$V$为点集),先预处理出$g_{i}$做FWT的结果,再$o(2^{n})$求出乘积在$V$处的值,时间复杂度为$o(n^{2}2^{n}+P(n)2^{n})$

对于其有贡献的状态,即将$\{l_{i}\}$重新排列后不同的序列,注意到每一个状态最多统计一次,因此暴力枚举所有排列(不重复)的复杂度也仅为$o(P(n)2^{n})$

综上,总复杂度为$o(n^{2}2^{n}+P(n)2^{n})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N (1<<18)
4 #define L 19
5 #define ll long long
6 vector<int>v;
7 int n,cnt[N],vis[L];
8 ll f[N][L],g[L][N],S[N],SS[L][N],ans[N];
9 char s[L][L];
10 void FWT(ll *a){
11 for(int i=0;i<n;i++)
12 for(int j=0;j<(1<<n);j++)
13 if (j&(1<<i))a[j]+=a[j^(1<<i)];
14 }
15 void get_per(int k,int S,ll s){
16 if (k==v.size()){
17 ans[S]+=s;
18 return;
19 }
20 int lst=0;
21 for(int i=0;i<v.size();i++)
22 if ((!vis[i])&&(lst!=v[i])){
23 vis[i]=1,lst=v[i];
24 get_per(k+1,((S<<v[i])|((1<<v[i]-1)-1)),s);
25 vis[i]=0;
26 }
27 }
28 void dfs(int k,int lst){
29 if (!k){
30 ll s=0;
31 for(int i=0;i<(1<<n);i++)
32 if ((n-cnt[i])&1)s-=S[i];
33 else s+=S[i];
34 get_per(0,0,s);
35 return;
36 }
37 memcpy(SS[k],S,sizeof(S));
38 for(int i=lst;i<=k;i++){
39 v.push_back(i);
40 for(int j=0;j<(1<<n);j++)S[j]*=g[i][j];
41 dfs(k-i,i);
42 v.pop_back();
43 memcpy(S,SS[k],sizeof(S));
44 }
45 }
46 int main(){
47 scanf("%d",&n);
48 for(int i=0;i<n;i++)scanf("%s",s[i]);
49 for(int i=0;i<(1<<n);i++)cnt[i]=cnt[i>>1]+(i&1);
50 for(int i=0;i<n;i++)f[1<<i][i]=1;
51 for(int i=1;i<(1<<n);i++)
52 for(int j=0;j<n;j++)
53 if (i&(1<<j)){
54 g[cnt[i]][i]+=f[i][j];
55 for(int k=0;k<n;k++)
56 if (((i&(1<<k))==0)&&(s[j][k]=='1'))f[i|(1<<k)][k]+=f[i][j];
57 }
58 for(int i=1;i<=n;i++)FWT(g[i]);
59 for(int i=0;i<(1<<n);i++)S[i]=1;
60 dfs(n,1);
61 n--;
62 for(int i=0;i<n;i++)
63 for(int j=0;j<(1<<n);j++)
64 if (j&(1<<i))ans[j^(1<<i)]-=ans[j];
65 for(int i=0;i<(1<<n);i++)printf("%lld ",ans[i]);
66 printf("\n");
67 return 0;
68 }

[cf1326F]Wise Men的更多相关文章

  1. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

  2. Bible

    001 Love your neighbor as yourself.         要爱人如己.--<旧·利>19:18      002 Resentment kills a foo ...

  3. MFC9.0 Outlook控件的标题显示无法修改

    这是我在开发中遇到的问题,现记录下来,以便帮助你们. 不想看废话的可以只看最后三行,但你会错过很多. 俗话说的好啊,"Wise men learn by other men's mistak ...

  4. Do not go gentle into that good night

    Do not go gentle into that good night By:Dylan Thomas   Do not go gentle into that good night,Old ag ...

  5. MFC9.0 Outlook控件的标题显示无法改动

    这是我在开发中遇到的问题,现记录下来,以便帮助你们. 不想看废话的能够仅仅看最后三行,但你会错过非常多. 俗话说的好啊,"Wise men learn by other men's mist ...

  6. June 7. 2018 Week 23rd Thursday

    Half is worse than none at all. 一知半解比一无所知更痛苦. From Westworld. If we go looking for the truth, get th ...

  7. PMP模拟考试-1

    1. A manufacturing project has a schedule performance index (SPI) of 0.89 and a cost performance ind ...

  8. time is always a factor, time is always now!!!!

    https://www.linkedin.com/pulse/time-always-now-joe-alderman ---------------------------------------- ...

  9. 快速沃尔什变换&快速莫比乌斯变换小记

    u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) ...

随机推荐

  1. 聊聊我对 GraphQL 的一些认知

    每隔一段时间就能看到一篇 GraphQL 的文章,但是打开文章一看,基本上就是简单的介绍下 GraphQL 的特性.很多文章其实就是 github 上找个 GraphQL 的项目,然后按照对应的 de ...

  2. MYSQL小版本升级(5.7.21至5.7.25)

    1.环境确认 [root@mysql ~]# ps -ef |grep -i mysql root 9173 1 0 2020 ? 00:00:00 /bin/sh /mysql/data/mysql ...

  3. CEF使用过程问题合集

    CEF使用过程问题合集 1.Couldn't mmap icu data file 解决方案:检查程序执行目录下是否有icudtl.dat文件,如果没有请从cef的Resources文件夹中复制一份. ...

  4. Java标识符和关键字的区别!java基础 java必学

    任何计算机语言都离不开标识符和关键字,那我们就来简单讲一下他们两者的区别,希望有助于大家的的理解!本篇文章干货满满,如果你觉得难懂的话可以看下高淇老师讲的Java300集的教学视频,分选集,深度剖析了 ...

  5. CSS常见的5种垂直水平居中(面试够用)

    方法一 (flex) <div id='box'> <div class='child'></div> </div> #box{ width:200px ...

  6. THUSC & 中考 & NOI 拉跨记

    THUSC 的拉胯记 时代比较久远了,可能有些事情记不清楚了. Day -\(\infty\) 本来说只有我.llsw.wxk过了审核,后来wy.lyc也搞了个体验营名额,于是和高二的一起集训. Da ...

  7. Javascript深入之作用域与闭包

    相信绝大多数同学都听过闭包这个概念,但闭包具体是什么估计很少有人能够说的很详细.说实话闭包在我们平时开发中应该是很常见的,并且在前端面试中闭包也是常见的重要考点,在学习闭包之前我们先来看看作用域与作用 ...

  8. javascript-jquery插件

    1.jquery创建插件 jQuery.extend({插件名:函数体,插件名:函数体}): html部分 <div id="div1">开始动画</div> ...

  9. SPI在JDBC中的运用

    前言 之前学习了JDK SPI的机制,本文专门讨论2个内容: 1.为什么在使用SPI后,不需要Class.forName()了? 2.SPI在JDBC中的运用. JDBC模板代码 private st ...

  10. Java:异常小记

    Java:异常小记 对 Java 中的 异常 ,做一个微不足道的小小小小记 Error 和 Exception 相同点: Exception 和Error 都是继承了 Throwable 类,在 Ja ...