Estimation of Non-Normalized Statistical Models by Score Matching
概
我们常常会建模如下的概率模型:
\]
比如energy-based models.
上述问题一般来说用极大似然不易求解, 因为
\]
常常不易估计(特别是高维的情形, 用MCMC是致命的).
所以倘若能够抛开\(Z(\theta)\)就能估计参数就好了, 本文就是提出了这个一个方法(虽然要求二阶导, 倘若用梯度方法求解便是需要三阶偏导了.)
我发现这个人也是噪声对比估计(负样本采样)的作者之一.
主要内容
方法
令
\left (
\begin{array}{cc}
\frac{\partial \log p(\xi;\theta)}{\partial \xi_1} \\
\vdots \\
\frac{\partial \log p(\xi;\theta)}{\partial \xi_n} \\
\end{array}
\right )
=\left (
\begin{array}{cc}
\psi_1(\xi;\theta) \\
\vdots \\
\psi_n(\xi;\theta) \\
\end{array}
\right )
=\nabla_{\xi} \log p(\xi;\theta),
\]
并令
\]
其中\(p_x(\xi)\)表示数据真实的分布.
最小化下列损失能够保证\(p(\xi;\theta)\)逼近\(p_x(\xi)\):
\]
损失函数的转换
显然
\]
设及真实分布, 不易求解, 但是通过对损失函数的转换, 我们发现其与真实分布并没有大的联系.
\psi(\xi;\theta) = \nabla_{\xi} \log p(\xi;\theta) = \nabla_{\xi} \log q (\xi;\theta).
\]
=\|\psi(\xi;\theta)\|^2 - 2\psi^T(\xi;\theta) \psi_x(\xi) + \|\psi_x(\xi)\|^2,
\]
第一项与\(p_x\)无关, 最后一项与\(\theta\)无关, 故只需考虑第二项:
= \sum_{i=1}^n \psi_{i}\frac{1}{p_x(\xi)} \frac{\partial p_x(\xi)}{\partial \xi_i},
\]
故
\int p_x(\xi) \psi^T(\xi;\theta)\psi_x(\xi) \mathrm{d}\xi
&=\int \sum_{i=1}^n \psi_{i}\frac{\partial p_x(\xi)}{\partial \xi_i} \mathrm{d}\xi \\
&=\sum_{i=1}^n \int \psi_{i}\frac{\partial p_x(\xi)}{\partial \xi_i} \mathrm{d}\xi \\
&=\sum_{i=1}^n \int \psi_{i}p_x(\xi)|_{\xi_i=-\infty}^{\xi_i=+\infty} \mathrm{d}\xi_{\setminus i} - \int p_x(\xi) \frac{\partial \psi_i}{\partial \xi_i} \mathrm{d}\xi.\\
&=-\sum_{i=1}^n \int p_x(\xi) \frac{\partial \psi_i}{\partial \xi_i} \mathrm{d}\xi.
\end{array}
\]
故:
\]
故我们可以用如下损失近似:
\]
注: 上述证明需要用到如下条件:
- \(p_x(\xi), \psi(\xi;\theta)\)可微;
- \(p_x(\xi) \psi(\xi;\theta) \rightarrow 0, \text{ if } \|\xi\| \rightarrow +\infty\).
一个例子
考虑多为正态分布:
\]
此时\(\hat{J}\)存在显示解, 且恰为:
M^* = [\frac{1}{T}\sum_{t=1}^T (x(t) - \mu^*) (x(t) - \mu^*)^T]^{-1},
\]
为极大似然估计的解.
Estimation of Non-Normalized Statistical Models by Score Matching的更多相关文章
- Statistical Models and Social Science
1.1 Statistical Models and Social Reality KEY: complex society v.s statistical models relationship,d ...
- 2.6. Statistical Models, Supervised Learning and Function Approximation
Statical model regression $y_i=f_{\theta}(x_i)+\epsilon_i,E(\epsilon)=0$ 1.$\epsilon\sim N(0,\sigma^ ...
- My deep learning reading list
My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...
- Deep Learning关于Vision的Reading List
最近开始学习深度学习了,加油! 下文转载自:http://blog.sina.com.cn/s/blog_bda0d2f10101fpp4.html 主要是顺着Bengio的PAMI review的文 ...
- NCE损失(Noise-Constrastive Estimation Loss)
1.算法概述 假设X是从真实的数据(或语料库)中抽取的样本,其服从一个相对可参考的概率密度函数P(d),噪音样本Y服从概率密度函数为P(n),噪音对比估计(NCE)就是通过学习一个分类器把这两类样本区 ...
- Tensorflow.nn 核心模块详解
看过前面的例子,会发现实现深度神经网络需要使用 tensorflow.nn 这个核心模块.我们通过源码来一探究竟. # Copyright 2015 Google Inc. All Rights Re ...
- Data - Tools
数据工具汇总 史上最全的大数据分析和制作工具 全球100款大数据工具汇总 SQL 数据分析常用语句 01 - NumPy HomePage:http://www.numpy.org/ NumPy(数值 ...
- 使用movielens数据集动手实现youtube推荐候选集生成
综述 之前在博客中总结过nce损失和YouTuBe DNN推荐;但大多都还是停留在理论层面,没有实践经验.所以笔者想借由此文继续深入探索YouTuBe DNN推荐,另外也进一步总结TensorFlow ...
- Noise Contrastive Estimation
Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...
随机推荐
- accelerate
accelerate accelerare, accumulare和accurate共享一个含义为to的词根,后半截分别是:fast, pile up, care (关心则精确). 近/反义词: ex ...
- abandon, aboard, abolish
abandon Abandon is a 2002 American psychological thriller drama film [惊悚片] ... Waiting for Handler o ...
- Oracle中建表及表操作
一.创建表 Oracle中的建表语句:create table 表名( 字段名1 数据类型 列属性,字段名2 数据类型 列属性,...... ) 如:创建表OA_DM.DM_GY_USER https ...
- Cx_Oracle 安装
1. 下载安装 2.把oci.ddl oraociei11.dll 放到C:\Python33\Lib\site-packages路径下
- spring定时任务执行两次
最近用Spring的quartz定时器的时候,发现到时间后,任务总是重复执行两次,在tomcat或jboss下都如此. 打印出他们的hashcode,发现是不一样的,也就是说,在web容器启动的时候, ...
- ORACLE lag,lead
oracle中想取对应列前几行或者后几行的数据时可以使用lag和lead分析函数 lag:是滞后的意思,表示本行数据是要查询的数据后面,即查询之前行的记录. lead:是领队的意思,表示本行数据是要查 ...
- Use of explicit keyword in C++
Predict the output of following C++ program. 1 #include <iostream> 2 3 using namespace std; 4 ...
- Spring中Bean的装配方式
一.基于xml的装配 Student.java package com.yh; public class Student implements People { public void breath( ...
- C# 使用管理员权限运行程序
最近在开发OPCServer组件过程中,在注册opcServer是总是返回false,后来查找原因得知在本地主机注册opcServer时,需要使用管理员权限. OPCServer在一台机器上部署时只需 ...
- ASP.NET管道模型简析
我相信在第一次听到这个名词时,有的小伙伴会一脸懵,而且还有很多疑问,其实我在第一次接触这个概念时跟很多小伙伴一样一脸懵. 接下来我将以我自己的理解来讲述什么是管道模型. 什么是管道模型 首先有没有小伙 ...