C. Magic Formulas
time limit per test:2 seconds     memory limit per test:256 megabytes
 
input

standard input

output

standard output

People in the Tomskaya region like magic formulas very much. You can see some of them below.

Imagine you are given a sequence of positive integer numbers p1, p2, ..., pn. Lets write down some magic formulas:

Here, "mod" means the operation of taking the residue after dividing.

The expression  means applying the bitwise xor (excluding "OR") operation to integers x and y. The given operation exists in all modern programming languages. For example, in languages C++ and Java it is represented by "^", in Pascal — by "xor".

People in the Tomskaya region like magic formulas very much, but they don't like to calculate them! Therefore you are given the sequence p, calculate the value of Q.

Input

The first line of the input contains the only integer n (1 ≤ n ≤ 106). The next line contains n integers: p1, p2, ..., pn (0 ≤ pi ≤ 2·109).

Output

The only line of output should contain a single integer — the value of Q.

Sample test(s)
input
3
1 2 3
output
3

 为公式2.

因为异或运算满足交换律和结合律,

所以公式 = p1^p2^……^pn^(1%1)^(1%2)^……(1%n)^(2%1)%(2%2)^……^(2%n)^……^(n%1)^(n%2)^……^(n%n)

=p1^p2^……^pn^(1%1)^(2%1)^……(n%1)^(1%2)^(2%2)^……^(n%2)^……^(1%n)%(2%n)^……^(n%n).

公式2=(1%1)^(1%2)^……(1%n)^(2%1)%(2%2)^……^(2%n)^……^(n%1)^(n%2)^……^(n%n)

=p1^p2^……^pn^(1%1)^(2%1)^……(n%1)^(1%2)^(2%2)^……^(n%2)^……^(1%n)%(2%n)^……^(n%n).

那么公式2再以后面模数分类结合。

可以的到模数从1-n的通项为Sk=(1%k)^(2%k)^.....(n%k).

那么k是从1-n取不同的数,然后公式2就为S1^S2.....^Sn

关键是Sk的求解,每一个k,Sk=(1%k)^(2%k)^.....(n%k),其中(n%k)的值只能取(0-k),那没 (1,n)是连续的所以必定有周期,

由于a^a=0,a^0=a;

举个例子;假如n=9,k=4;

1 2 3 0
1 2 3 0
1      
       

结果就是1,上边的两行a^a=0,所以只剩下1;

又如当n=25,k=7时。(1%7)、(2%7)……(25%7)的结果如下表。

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

 

上边的整行就是n/k;

下面剩下的就是n%k;

那么如果上面为偶数行&&(n%k)>=1的话那么最后的sk=1^...(n%k);

如果上面为偶数行&&n%k==0,那么sk=0;

如果上面为奇数行&&(n%k)==0,sk=1^...k;

如果上面为奇数行&&(n%k)>=1,那么sk=(n%k+1)^....k;

这样的话每个sk就很容易计算了。

 1 #include<stdio.h>
2 #include<algorithm>
3 #include<stdlib.h>
4 #include<string.h>
5 #include<iostream>
6 #include<queue>
7 #include<math.h>
8 typedef long long ll;
9 ll a[1000005];
10 ll dd[1000005];
11 ll cc[1000005];
12 int main(void)
13 {
14 ll i,j,k,p,q;
15 ll pp=0;
16 dd[0]=0;
17 while(scanf("%I64d",&k)!=EOF)
18 {
19 cc[k+1]=0;
20 for(i=1; i<=k; i++)
21 {
22 scanf("%I64d",&a[i]);
23 pp^=a[i];
24 dd[i]=(dd[i-1]^i);
25 }
26 for(i=k; i>=0; i--)
27 {
28 cc[i]=cc[i+1]^i;
29 }
30 /*那么如果上面为偶数行&&(n%k)>=1的话那么最后的sk=1^...(n%k);
31
32 如果上面为偶数行&&n%k==0,那么sk=0;
33 如果上面为奇数行&&(n%k)==0,sk=1^...k;
34
35 如果上面为奇数行&&(n%k)>=1,那么sk=(n%k+1)^....k;*/
36 for(i=1; i<=k; i++)
37 {
38 p=k/i;
39 q=k%i;
40 if(p%2==1)
41 {
42 pp^=(cc[i]^cc[q+1]);
43 }
44 else if(p%2==0)
45 {
46 pp^=dd[q];
47 }
48 }
49 printf("%I64d\n",pp);
50 }
51 return 0;
52 }

codeforce-424C. Magic Formulas(数学)的更多相关文章

  1. CodeForce 424C Magic Formulas

    这个题就是求出给的公式的结果. 仅仅要知道异或运算满足交换律跟结合律即可了.之后就是化简公式. #include<map> #include<string> #include& ...

  2. Codeforce 424C Magic Formulas 找规律

    题目链接:http://codeforces.com/contest/424/problem/C 题意:求Q值 思路:找规律 显然能够得到一个矩阵 把这个矩阵画出来就能发现一个横向的规律和一个主对角线 ...

  3. Codeforces 424 C. Magic Formulas

    xor是满足交换律的,展开后发现仅仅要能高速求出 [1mod1....1modn],....,[nmod1...nmodn]的矩阵的xor即可了....然后找个规律 C. Magic Formulas ...

  4. Codeforces Round #242 (Div. 2) C. Magic Formulas

    解题思路是: Q=q1^q2.......^qn = p1^p2......^pn^((1%1)^....(1%n))^((2%1)^......(2%n))^.... 故Q的求解过程分成两部分 第一 ...

  5. Codeforces Round #242 (Div. 2) C. Magic Formulas (位异或性质 找规律)

    题目 比赛的时候找出规律了,但是找的有点慢了,写代码的时候出了问题,也没交对,还掉分了.... 还是先总结一下位移或的性质吧: 1.  交换律 a ^ b = b ^ a 2. 结合律 (a^b) ^ ...

  6. codeforce 606A - Magic Spheres

    题意:a,b,c三种球,能把俩个一样的球变成另一颜色不一样的球.给你目标x,y,z,问能否经过变化至少达打目标. #include<iostream> #include<stdio. ...

  7. cf C. Magic Formulas

    http://codeforces.com/contest/424/problem/C #include <cstdio> #include <cstring> #includ ...

  8. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field 数学

    题目链接 题意:给你三个数n,m,k;让你构造出一个nm的矩阵,矩阵元素只有两个值(1,-1),且满足每行每列的乘积为k,问你多少个矩阵. 解法:首先,如果n,m奇偶不同,且k=-1时,必然无解: 设 ...

  9. codeforces C. Magic Formulas 解题报告

    题目链接:http://codeforces.com/problemset/problem/424/C 题目意思:给出 n 个数:p1, p2, ..., pn,定义: q1 = p1 ^ (1 mo ...

随机推荐

  1. Freeswitch 安装爬坑记录1

    2 Freeswitch的安装 2.1 准备工作 服务器安装CentOS 因为是内部环境,可以关闭一些防火墙设置,保证不会因为网络限制而不能连接 关闭防火墙 查看防火墙 systemctl statu ...

  2. tensoboard [Errno 22] Invalid argument 以及 Invalid format string问题解决

    Invalid argument 问题解决: 需要保证tensorboard与tensorflow版本一致. Invalid format string 问题解决: 修改 manager.py 文件中 ...

  3. absorb

    absorb 物理的absorb比较直观.被书本/知识absorb也好理解.涉及到money/time时有点抽象,但汉语也有"吸金"的说法,consume, use up.可以吸收 ...

  4. 关于vue-cli中-webkit-flex-direction: column失效问题

    我最近在用vue-cli更新项目,在我引入layer.css后会报错并且使用弹性盒时查看元素的时候没有-webkit-flex-direction: column这个属性会失效 这个本身就不打算给di ...

  5. 银联acp手机支付总结

    总结: 1.手机调用后台服务端接口,获取银联返回的流水号tn 银联支付是请求后台,后台向银联下单,返回交易流水号,然后返回给用户,用户通过这个交易流水号,向银联发送请求,获取订单信息,然后再填写银行卡 ...

  6. 关于form表单提交ajaxForm和ajaxSubmit的用法与区别

    前几天在学习form表单提交时看到这两种方法,这两种方法都是实现form的ajax提交的方法,看了很多资料还是不太明白其用法和区别,最后直接自己写demo,很快就理解,所以说实操是学习的最快捷直接的途 ...

  7. 页面屏蔽backspace键

    1 //页面加载完成 2 $(document).ready(function(){ 3 //禁止退格键 作用于Firefox.Opera 4 document.onkeypress = banBac ...

  8. 【Linux】【Basis】CentOS启动流程

    1. 基础概念       1.1 Linux系统的组成部分:内核+根文件系统         内核:进程管理.内存管理.网络协议栈.文件系统.驱动程序.安全功能             IPC:In ...

  9. Java Log4j 配置文件

    ### 设置### log4j.rootLogger = debug,stdout,D,E ### 输出信息到控制抬 ### log4j.appender.stdout = org.apache.lo ...

  10. Java-如何合理的设置线程池大小

    想要合理配置线程池线程数的大小,需要分析任务的类型,任务类型不同,线程池大小配置也不同. 配置线程池的大小可根据以下几个维度进行分析来配置合理的线程数: 任务性质可分为:CPU密集型任务,IO密集型任 ...