Lu C, Zhang T, Du X, et al. A robust kernel PCA algorithm[C]. international conference on machine learning and cybernetics, 2004: 3084-3087.

这篇文章的思想很简单,如何将robust 和 kernel结合起来:找出异常值,将异常值排除,再进行kernel PCA。但是实际上,并非这么容易。

首先,论文抛出了俩个问题:

1.在原空间中为异常值的点,通过kernel隐式地被映射到高维空间后是否依旧是异常值;

2.如何判断该点是否为异常值。

主要内容

问题一

论文引了一篇文献来说明此问题,我没有去查阅:

当非线性映射\(\Phi(\cdot)\)为连续平滑(可微?)的函数是,数据的拓扑结构 不变。所以,一般的kernel应当是符合条件的。

问题二

论文圈定一个范围,先找到一个超球体,将所有的数据点都包裹进去的最小超球体,即:

\[\|\Phi(x_i) - c\| \le R^2
\]

其中\(c\)是球体的中心,假设\(c = \sum \limits_i \lambda_i^0 \Phi(x_i)\),那么\(\lambda_i^0\)将是下列方程的最优解(这个也是引入文献说明的,我也不打算深究):



好吧,截个图:

有了中心,我们就可以通过计算\(\Phi(x_i)\)与\(c\)的最大距离来确定\(R\):



好了,现在\(R\)也找到了,可是,所有的点都在超球内,得找一个\(R'\)来限定出一些奇异值来,问题是\(R'\)该怎么找呢?这个地方我真的觉得蛮扯的,找一个\(R'\)使得异常点的数量为\(3\% \sim 5\%\),这个怎么说呢,我觉得会不会太主观了。所以,就是以一定步长来搜索\(R'\)?感觉好蠢。

A ROBUST KERNEL PCA ALGORITHM的更多相关文章

  1. Robust De-noising by Kernel PCA

    目录 引 主要内容 Takahashi T, Kurita T. Robust De-noising by Kernel PCA[C]. international conference on art ...

  2. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  3. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  4. Kernel PCA 原理和演示

    Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的 ...

  5. 【模式识别与机器学习】——PCA与Kernel PCA介绍与对比

    PCA与Kernel PCA介绍与对比 1. 理论介绍 PCA:是常用的提取数据的手段,其功能为提取主成分(主要信息),摒弃冗余信息(次要信息),从而得到压缩后的数据,实现维度的下降.其设想通过投影矩 ...

  6. Probabilistic PCA、Kernel PCA以及t-SNE

    Probabilistic PCA 在之前的文章PCA与LDA介绍中介绍了PCA的基本原理,这一部分主要在此基础上进行扩展,在PCA中引入概率的元素,具体思路是对每个数据$\vec{x}_i$,假设$ ...

  7. Kernel PCA and De-Noisingin Feature Spaces

    目录 引 主要内容 Kernel PCA and De-Noisingin Feature Spaces 引 kernel PCA通过\(k(x,y)\)隐式地将样本由输入空间映射到高维空间\(F\) ...

  8. Kernel PCA for Novelty Detection

    目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...

  9. Missing Data in Kernel PCA

    目录 引 主要内容 关于缺失数据的导数 附录 极大似然估计 代码 Sanguinetti G, Lawrence N D. Missing data in kernel PCA[J]. europea ...

随机推荐

  1. 日常Java 2021/10/25

    ArrayList存储数字 import java.util.ArrayList; public class Arr_test { public static void main(String[] a ...

  2. 在idea的java开发中字符串length()方法获取长度与赋值不符的问题

    最近在开发中用到length()方法获取中文字符串的长度,发现获得的长度与实际不符.比如个String类型赋值为"中",但获取长度却是2. 这让我百思不得其解,后来突然想起来我在研 ...

  3. Flink(一)【基础入门,Yarn、Local模式】

    目录 一.介绍 Spark | Flink 二.快速入门:WC案例 pom依赖 批处理 流处理 有界流 无界流(重要) 三.Yarn模式部署 安装 打包测试,命令行(无界流) Flink on Yar ...

  4. Flume(三)【进阶】

    [toc] 一.Flume 数据传输流程 重要组件: 1)Channel选择器(ChannelSelector) ​ ChannelSelector的作用就是选出Event将要被发往哪个Channel ...

  5. 零基础学习java------37---------mybatis的高级映射(单表查询,多表(一对一,一对多)),逆向工程,Spring(IOC,DI,创建对象,AOP)

    一.  mybatis的高级映射 1  单表,字段不一致 resultType输出映射: 要求查询的字段名(数据库中表格的字段)和对应的java类型的属性名一致,数据可以完成封装映射 如果字段和jav ...

  6. Linux学习 - fdisk分区

    一.fdisk命令分区过程 系统一旦重启,分区将消失 1 添加新硬盘 直接在虚拟机上添加 2 查看新硬盘 fdisk -l 3 分区 fdisk /dev/sdb fdisk进入/dev/sdb硬件设 ...

  7. linux如何安装缺失依赖

    这里要提到一个网站https://pkgs.org/,他是linux系统的一个相关网站,里面都是相关内容 Warning: RPMDB altered outside of yum. ** Found ...

  8. Shell脚本实现乱序排列文件内容的多种方法(洗牌问题)

    洗牌问题:洗一副扑克,有什么好办法?既能洗得均匀,又能洗得快?即相对于一个文件来说怎样高效率的实现乱序排列? ChinaUnix 确实是 Shell 高手云集的地方,只要你想得到的问题,到那里基本上都 ...

  9. jQuery - focusin/focusout/focus/blur事件的区别与不同

    focus与blur事件:不支持冒泡 focusin与focusout:支持冒泡 事件触发顺序: 对于同时支持这4个事件的浏览器,事件执行顺序为focusin(聚焦) > focus > ...

  10. 【Linux】【CentOS7】免密登录突然失效

    [报错解决]免密登录突然失效 哔哩哔哩 萌狼蓝天 博客:萌狼工作室-博客园 [问题描述] 原本配置好了的免密登录,今天启动hadoop发现免密登录失效了 [解决方案] 1.切换到管理员模式,进入配置文 ...