A ROBUST KERNEL PCA ALGORITHM
引
这篇文章的思想很简单,如何将robust 和 kernel结合起来:找出异常值,将异常值排除,再进行kernel PCA。但是实际上,并非这么容易。
首先,论文抛出了俩个问题:
1.在原空间中为异常值的点,通过kernel隐式地被映射到高维空间后是否依旧是异常值;
2.如何判断该点是否为异常值。
主要内容
问题一
论文引了一篇文献来说明此问题,我没有去查阅:
当非线性映射\(\Phi(\cdot)\)为连续平滑(可微?)的函数是,数据的拓扑结构 不变。所以,一般的kernel应当是符合条件的。
问题二
论文圈定一个范围,先找到一个超球体,将所有的数据点都包裹进去的最小超球体,即:
\]
其中\(c\)是球体的中心,假设\(c = \sum \limits_i \lambda_i^0 \Phi(x_i)\),那么\(\lambda_i^0\)将是下列方程的最优解(这个也是引入文献说明的,我也不打算深究):

好吧,截个图:

有了中心,我们就可以通过计算\(\Phi(x_i)\)与\(c\)的最大距离来确定\(R\):

好了,现在\(R\)也找到了,可是,所有的点都在超球内,得找一个\(R'\)来限定出一些奇异值来,问题是\(R'\)该怎么找呢?这个地方我真的觉得蛮扯的,找一个\(R'\)使得异常点的数量为\(3\% \sim 5\%\),这个怎么说呢,我觉得会不会太主观了。所以,就是以一定步长来搜索\(R'\)?感觉好蠢。
A ROBUST KERNEL PCA ALGORITHM的更多相关文章
- Robust De-noising by Kernel PCA
目录 引 主要内容 Takahashi T, Kurita T. Robust De-noising by Kernel PCA[C]. international conference on art ...
- Kernel Methods (5) Kernel PCA
先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...
- Principal Component Analysis(PCA) algorithm summary
Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...
- Kernel PCA 原理和演示
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的 ...
- 【模式识别与机器学习】——PCA与Kernel PCA介绍与对比
PCA与Kernel PCA介绍与对比 1. 理论介绍 PCA:是常用的提取数据的手段,其功能为提取主成分(主要信息),摒弃冗余信息(次要信息),从而得到压缩后的数据,实现维度的下降.其设想通过投影矩 ...
- Probabilistic PCA、Kernel PCA以及t-SNE
Probabilistic PCA 在之前的文章PCA与LDA介绍中介绍了PCA的基本原理,这一部分主要在此基础上进行扩展,在PCA中引入概率的元素,具体思路是对每个数据$\vec{x}_i$,假设$ ...
- Kernel PCA and De-Noisingin Feature Spaces
目录 引 主要内容 Kernel PCA and De-Noisingin Feature Spaces 引 kernel PCA通过\(k(x,y)\)隐式地将样本由输入空间映射到高维空间\(F\) ...
- Kernel PCA for Novelty Detection
目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...
- Missing Data in Kernel PCA
目录 引 主要内容 关于缺失数据的导数 附录 极大似然估计 代码 Sanguinetti G, Lawrence N D. Missing data in kernel PCA[J]. europea ...
随机推荐
- 日常Java 2021/10/25
ArrayList存储数字 import java.util.ArrayList; public class Arr_test { public static void main(String[] a ...
- 在idea的java开发中字符串length()方法获取长度与赋值不符的问题
最近在开发中用到length()方法获取中文字符串的长度,发现获得的长度与实际不符.比如个String类型赋值为"中",但获取长度却是2. 这让我百思不得其解,后来突然想起来我在研 ...
- Flink(一)【基础入门,Yarn、Local模式】
目录 一.介绍 Spark | Flink 二.快速入门:WC案例 pom依赖 批处理 流处理 有界流 无界流(重要) 三.Yarn模式部署 安装 打包测试,命令行(无界流) Flink on Yar ...
- Flume(三)【进阶】
[toc] 一.Flume 数据传输流程 重要组件: 1)Channel选择器(ChannelSelector) ChannelSelector的作用就是选出Event将要被发往哪个Channel ...
- 零基础学习java------37---------mybatis的高级映射(单表查询,多表(一对一,一对多)),逆向工程,Spring(IOC,DI,创建对象,AOP)
一. mybatis的高级映射 1 单表,字段不一致 resultType输出映射: 要求查询的字段名(数据库中表格的字段)和对应的java类型的属性名一致,数据可以完成封装映射 如果字段和jav ...
- Linux学习 - fdisk分区
一.fdisk命令分区过程 系统一旦重启,分区将消失 1 添加新硬盘 直接在虚拟机上添加 2 查看新硬盘 fdisk -l 3 分区 fdisk /dev/sdb fdisk进入/dev/sdb硬件设 ...
- linux如何安装缺失依赖
这里要提到一个网站https://pkgs.org/,他是linux系统的一个相关网站,里面都是相关内容 Warning: RPMDB altered outside of yum. ** Found ...
- Shell脚本实现乱序排列文件内容的多种方法(洗牌问题)
洗牌问题:洗一副扑克,有什么好办法?既能洗得均匀,又能洗得快?即相对于一个文件来说怎样高效率的实现乱序排列? ChinaUnix 确实是 Shell 高手云集的地方,只要你想得到的问题,到那里基本上都 ...
- jQuery - focusin/focusout/focus/blur事件的区别与不同
focus与blur事件:不支持冒泡 focusin与focusout:支持冒泡 事件触发顺序: 对于同时支持这4个事件的浏览器,事件执行顺序为focusin(聚焦) > focus > ...
- 【Linux】【CentOS7】免密登录突然失效
[报错解决]免密登录突然失效 哔哩哔哩 萌狼蓝天 博客:萌狼工作室-博客园 [问题描述] 原本配置好了的免密登录,今天启动hadoop发现免密登录失效了 [解决方案] 1.切换到管理员模式,进入配置文 ...