Lu C, Zhang T, Du X, et al. A robust kernel PCA algorithm[C]. international conference on machine learning and cybernetics, 2004: 3084-3087.

这篇文章的思想很简单,如何将robust 和 kernel结合起来:找出异常值,将异常值排除,再进行kernel PCA。但是实际上,并非这么容易。

首先,论文抛出了俩个问题:

1.在原空间中为异常值的点,通过kernel隐式地被映射到高维空间后是否依旧是异常值;

2.如何判断该点是否为异常值。

主要内容

问题一

论文引了一篇文献来说明此问题,我没有去查阅:

当非线性映射\(\Phi(\cdot)\)为连续平滑(可微?)的函数是,数据的拓扑结构 不变。所以,一般的kernel应当是符合条件的。

问题二

论文圈定一个范围,先找到一个超球体,将所有的数据点都包裹进去的最小超球体,即:

\[\|\Phi(x_i) - c\| \le R^2
\]

其中\(c\)是球体的中心,假设\(c = \sum \limits_i \lambda_i^0 \Phi(x_i)\),那么\(\lambda_i^0\)将是下列方程的最优解(这个也是引入文献说明的,我也不打算深究):



好吧,截个图:

有了中心,我们就可以通过计算\(\Phi(x_i)\)与\(c\)的最大距离来确定\(R\):



好了,现在\(R\)也找到了,可是,所有的点都在超球内,得找一个\(R'\)来限定出一些奇异值来,问题是\(R'\)该怎么找呢?这个地方我真的觉得蛮扯的,找一个\(R'\)使得异常点的数量为\(3\% \sim 5\%\),这个怎么说呢,我觉得会不会太主观了。所以,就是以一定步长来搜索\(R'\)?感觉好蠢。

A ROBUST KERNEL PCA ALGORITHM的更多相关文章

  1. Robust De-noising by Kernel PCA

    目录 引 主要内容 Takahashi T, Kurita T. Robust De-noising by Kernel PCA[C]. international conference on art ...

  2. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  3. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  4. Kernel PCA 原理和演示

    Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的 ...

  5. 【模式识别与机器学习】——PCA与Kernel PCA介绍与对比

    PCA与Kernel PCA介绍与对比 1. 理论介绍 PCA:是常用的提取数据的手段,其功能为提取主成分(主要信息),摒弃冗余信息(次要信息),从而得到压缩后的数据,实现维度的下降.其设想通过投影矩 ...

  6. Probabilistic PCA、Kernel PCA以及t-SNE

    Probabilistic PCA 在之前的文章PCA与LDA介绍中介绍了PCA的基本原理,这一部分主要在此基础上进行扩展,在PCA中引入概率的元素,具体思路是对每个数据$\vec{x}_i$,假设$ ...

  7. Kernel PCA and De-Noisingin Feature Spaces

    目录 引 主要内容 Kernel PCA and De-Noisingin Feature Spaces 引 kernel PCA通过\(k(x,y)\)隐式地将样本由输入空间映射到高维空间\(F\) ...

  8. Kernel PCA for Novelty Detection

    目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...

  9. Missing Data in Kernel PCA

    目录 引 主要内容 关于缺失数据的导数 附录 极大似然估计 代码 Sanguinetti G, Lawrence N D. Missing data in kernel PCA[J]. europea ...

随机推荐

  1. 启动spark-shell --master yarn的bug

    报错如下 18/06/06 15:55:31 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited ...

  2. 关于vue-cli中-webkit-flex-direction: column失效问题

    我最近在用vue-cli更新项目,在我引入layer.css后会报错并且使用弹性盒时查看元素的时候没有-webkit-flex-direction: column这个属性会失效 这个本身就不打算给di ...

  3. 【Android】No Android SDK found(mac)+ 真机调试

     [1]No Android SDK found 如果没下载SDK,可以去google官方下载 如果因为上网问题,这里提供两个网址,有人整理好了,这里先谢谢他们,下面两个择其一下载 http://to ...

  4. Linux系统根目录下各文件夹介绍

    参考自:[1]Linux 系统根目录下各个文件夹的作用 https://www.cnblogs.com/jiangfeilong/p/10538795.html[2]了解Linux根目录"/ ...

  5. 使用Mock测试

    一.前言 在前面的章节我们介绍过 Junit 的使用,也了解过 spring-test,今天我们来了解一个新玩意 -- mock 测试.这里仅仅做一个入门,对返回视图和返回 Json 数据的方法进行测 ...

  6. python web框架学习笔记

    一.web框架本质 1.基于socket,自己处理请求 #!/usr/bin/env python3 #coding:utf8 import socket def handle_request(cli ...

  7. 【Linux】【Services】任务计划、周期性任务执行

    Linux任务计划.周期性任务执行       未来的某时间点执行一次某任务:at, batch     周期性运行某任务:crontab         执行结果:会通过邮件发送给用户        ...

  8. java中二维数组初始化的几种方法

    /* 第一种方式 */ int tdarr1[][] = { { 1, 3, 5 }, { 5, 9, 10 } }; /* 第二种方式 */ int tdarr2[][] = new int[][] ...

  9. java代码从出生到执行的过程浅析

    阅读<深入理解java虚拟机 第二版 JVM高级特性与最佳实践> - jdk版本为1.6 1.什么是编译型语言.解释型语言 解释型语言:源代码不是直接翻译成机器语言,而是先翻译成中间代码, ...

  10. Nginx SERVER块配置

    1 Listen 指令 Example Configuration Directives 2 server_name指令 2.1 规则 指令后可以跟多个域名,第一个是主域名 *泛域名:进支持在最前或最 ...