Google Pixel 超分辨率--Super Resolution Zoom

Google 的Super Res Zoom技术,主要用于在zoom时增强画面细节以及提升在夜景下的效果。

文章的主要贡献有:

·       使用多帧图像超分辨算法代替去马赛克算法

·       引入自适应核插值和融合算法。其自适应于图像的局部结构,对稀疏采样的数据进行拟合。

·       提出了运动鲁棒模型,对局部运动、遮挡、配准失败区域有较好的的鲁棒性

·       分析了手部震颤规律,并说明了其做为亚像素偏移获取来源的有效性

整个算法流程如图1所示,其主要包括:多帧RAW图像的获取、图像配准、图像融合三个步骤。首先,获取多帧RAW图像(CFA Bayer),然后选择其中一阵作为基帧(base frame),剩下的图像都对该帧进行局部对齐。通过核回归估计每一帧对结果的局部贡献(contribution),然后分颜色通道将这些贡献叠加起来。为了是算法更有鲁棒性,借助于图像局部特征对核形状进行调整,并利用鲁棒性模型对采样的贡献值进行加权。最后,对每个颜色通道进行归一化得到最后的RGB图像。

图1: 算法流程

本文对demosaic 进行了增强,相对以前的效果提升如下图,可以看出在高频区域尤其是摩尔纹处得到了很好的改善:

图2: 效果对比

首先说明Google 在文中介绍的超分并没有采用深度学习的方法,而是采用了传统做法。其原理也很简单,一句话概括为:通过多帧来填补Bayer中缺少的图像分量。sensor都是Bayer 格式,每个像素处只有一个色彩通道,其余的色彩是通过插值得来,而插值的过程中就会产生摩尔纹等问题。

图3: bayer 与插值

假设物体是不动的,我们每次分别每次移动1个像素,拍摄4次,岂不是就可以在每个像素位置处凑够RGGB 像素值了呢,这样我们无须插值就可以获得一张从Bayer到RGB的图像。

图4:多帧方法获得RGB采样值这种设计思想在Sony、宾得等单反相机上从2017 年就已经开始应用,技术名为:像素偏移多重拍摄(图5)

图5

因为单反等拥有很强的硬件基础可以精准控制位置的移动,手机上没有这么多硬件设备了,那手机怎么来创造位移呢?Google假设并调研了人拍照时手抖的特点,发现了拍照时手抖就可以创造出足够的亚像素位移来保证多帧图像基本可以使每个像素位置都能拍摄到三个通道(图6)。

图6

运动估计在之前的计算中已经得到了解决(HDR+ 和夜景中都有讲解),剩下的难点就变成了如何来融合多帧每个通道的像素了,其流程如下图,无非就是参考噪声模型、局部细节、运动向量等老生常谈的特征,剩余内容就是对图7公式的补充和解释,建议感兴趣的直接去看论文即可。

图7

因为计算量和图像尺寸以及帧数成线性,文中给出的计算速度是在高通Adreno 630 GPU平台上的数据,15.4ms+7.8ms/MPixel,并不算特别快,这也是为什么在GoogleBlog 里面说“SuperRes Zoom可以在所有缩放系数下工作,不过由于性能原因,只在1.2倍以上激活”吧。

Google Pixel 超分辨率--Super Resolution Zoom的更多相关文章

  1. 使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning

    使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸 ...

  2. Google 超分辨率技术 RAISR

    每天都有数以百万计的图片在网络上被分享.储存,用户借此探索世界,研究感兴趣的话题,或者与朋友家人分享假期照片.问题是,大量的图片要嘛被照相设备的像素所限制,要嘛在手机.平板或网络限制下被人为压缩,降低 ...

  3. 【超分辨率】—图像超分辨率(Super-Resolution)技术研究

    一.相关概念 1.分辨率 图像分辨率指图像中存储的信息量,是每英寸图像内有多少个像素点,分辨率的单位为PPI(Pixels Per Inch),通常叫做像素每英寸.一般情况下,图像分辨率越高,图像中包 ...

  4. 腾讯QQ空间超分辨率技术TSR

    腾讯QQ空间超分辨率技术TSR:为用户节省3/4流量,处理效果和速度超谷歌RAISR 雷锋网AI科技评论: 随着移动端屏幕分辨率越来越高,甚至像iPhone更有所谓的“视网膜屏”,人们对高清图片的诉求 ...

  5. Speech Super Resolution Generative Adversarial Network

    博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...

  6. Computer Vision Applied to Super Resolution

    Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal ...

  7. 浅谈AI视频技术超分辨率

    泛娱乐应用成为主流,社交与互动性强是共性,而具备这些特性的产品往往都集中在直播.短视频.图片分享社区等社交化娱乐产品,而在这些产品背后的黑科技持续成为关注重点,网易云信在网易MCtalk 泛娱乐创新峰 ...

  8. ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution

    ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...

  9. 『超分辨率重建』从SRCNN到WDSR

    超分辨率重建技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像.SR可分为两类:    1. 从多张低分辨率图像重建出高分辨率图像    2. 从单张低分辨率图 ...

随机推荐

  1. 多指灵巧手MoveIt!与Gazebo联合仿真框架搭建

    至于为什么叫框架,一是因为灵巧手的3维模型没有按照基本的设计要求画,正常来说,设计机器人机构之前应该设计好机构需要多少个自由度/DOF,每个自由度是旋转/revolute类型还是滑移/prismati ...

  2. git基于master创建本地新分支

    应用场景:开发过程中经常用到从master分支copy一个本地分支作为开发分支 步骤: 1.切换到被copy的分支(master),并且从远端拉取最新版本 $git checkout master $ ...

  3. Thinkphp5 日期与时间戳相互转换

    日期转换为时间戳 $date="2013-10-01 12:23:14"; dump(strtotime($date)); //=>1380601394 时间戳 转换为日期 ...

  4. hdu1435 稳定婚姻问题

    题意: Stable Match Special Judge Problem Description Network 公司的BOSS 说现在他们公司建立的信号发射站和接收站经常出现信号发送接收不稳定的 ...

  5. hdu4975 行列和构造矩阵(dp判断唯一性)

    题意:       和hdu4888一样,只不过是数据加强了,就是给你行列的和,让你构造一个矩阵,然后判断矩阵是否唯一. 思路:       构造矩阵很简单,跑一次最大流就行了,关键是判断矩阵的唯一性 ...

  6. 洛谷P1553 数字反转(升级版)

    题目简介 题目描述       给定一个数,请将该数各个位上数字反转得到一个新数.       这次与NOIp2011普及组第一题不同的是:这个数可以是小数,分数,百分数,整数.整数反转是将所有数位对 ...

  7. POJ1258简单最小生成树

    #include<stdio.h> #include<algorithm> #define N (100 + 10) using namespace std; typedef ...

  8. Maven执行Install命令时跳过测试

    1. 在pom.xml中添加插件 <!-- 跳过单元测试,不然打包的时候会因为加载不了application.yaml报错 --> <plugin> <groupId&g ...

  9. 手写Spring MVC框架(一) 实现简易版mvc框架

    前言 前面几篇文章中,我们讲解了Spring MVC执⾏的⼤致原理及关键组件的源码解析,今天,我们来模仿它⼿写⾃⼰的mvc框架. 先梳理一下需要实现的功能点: tomcat加载配置文件web.xml: ...

  10. ROS之初见Hello World

    前言 最近在玩ROS,笔记中断了一段时间. ROS即Robot Operating System,机器人操作系统,是一个开源框架,主力语言是C++和python,提供了硬件抽象.设备驱动.库函数.可视 ...