简介

在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window 。Pandas提供了一个rolling方法,通过滚动window来进行统计计算。

本文将会探讨一下rolling中的window用法。

滚动窗口

我们有5个数,我们希望滚动统计两个数的和,那么可以这样:

In [1]: s = pd.Series(range(5))

In [2]: s.rolling(window=2).sum()
Out[2]:
0 NaN
1 1.0
2 3.0
3 5.0
4 7.0
dtype: float64

rolling 对象可以通过for来遍历:

In [3]: for window in s.rolling(window=2):
...: print(window)
...:
0 0
dtype: int64
0 0
1 1
dtype: int64
1 1
2 2
dtype: int64
2 2
3 3
dtype: int64
3 3
4 4
dtype: int64

pandas中有四种window操作,我们看下他们的定义:

名称 方法 返回对象 是否支持时间序列 是否支持链式groupby操作
固定或者可滑动的窗口 rolling Rolling Yes Yes
scipy.signal库提供的加权非矩形窗口 rolling Window No No
累积值的窗口 expanding Expanding No Yes
值上的累积和指数加权窗口 ewm ExponentialMovingWindow No Yes (as of version 1.2)

​ 看一个基于时间rolling的例子:

In [4]: s = pd.Series(range(5), index=pd.date_range('2020-01-01', periods=5, freq='1D'))

In [5]: s.rolling(window='2D').sum()
Out[5]:
2020-01-01 0.0
2020-01-02 1.0
2020-01-03 3.0
2020-01-04 5.0
2020-01-05 7.0
Freq: D, dtype: float64

设置min_periods可以指定window中的最小的NaN的个数:

In [8]: s = pd.Series([np.nan, 1, 2, np.nan, np.nan, 3])

In [9]: s.rolling(window=3, min_periods=1).sum()
Out[9]:
0 NaN
1 1.0
2 3.0
3 3.0
4 2.0
5 3.0
dtype: float64 In [10]: s.rolling(window=3, min_periods=2).sum()
Out[10]:
0 NaN
1 NaN
2 3.0
3 3.0
4 NaN
5 NaN
dtype: float64 # Equivalent to min_periods=3
In [11]: s.rolling(window=3, min_periods=None).sum()
Out[11]:
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
dtype: float64

Center window

默认情况下window的统计是以最右为准,比如window=5,那么前面的0,1,2,3 因为没有达到5,所以为NaN。

In [19]: s = pd.Series(range(10))

In [20]: s.rolling(window=5).mean()
Out[20]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64

可以对这种方式进行修改,设置 center=True 可以从中间统计:

In [21]: s.rolling(window=5, center=True).mean()
Out[21]:
0 NaN
1 NaN
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0
7 7.0
8 NaN
9 NaN
dtype: float64

Weighted window 加权窗口

使用 win_type 可以指定加权窗口的类型。其中win_type 必须是scipy.signal 中的window类型。

举几个例子:

In [47]: s = pd.Series(range(10))

In [48]: s.rolling(window=5).mean()
Out[48]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64 In [49]: s.rolling(window=5, win_type="triang").mean()
Out[49]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64 # Supplementary Scipy arguments passed in the aggregation function
In [50]: s.rolling(window=5, win_type="gaussian").mean(std=0.1)
Out[50]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64

扩展窗口

扩展窗口会产生聚合统计信息的值,其中包含该时间点之前的所有可用数据。

In [51]: df = pd.DataFrame(range(5))

In [52]: df.rolling(window=len(df), min_periods=1).mean()
Out[52]:
0
0 0.0
1 0.5
2 1.0
3 1.5
4 2.0 In [53]: df.expanding(min_periods=1).mean()
Out[53]:
0
0 0.0
1 0.5
2 1.0
3 1.5
4 2.0

指数加权窗口

指数加权窗口与扩展窗口相似,但每个先验点相对于当前点均按指数加权。

加权计算的公式是这样的:

\(y_t=Σ^t_{i=0}{w_ix_{t-i}\over{Σ^t_{i=0}w_i}}\)

其中\(x_t\)是输入,\(y_t\)是输出,\(w_i\)是权重。

EW有两种模式,一种模式是 adjust=True ,这种情况下 \(_=(1−)^\)

一种模式是 adjust=False ,这种情况下:

\[y_0=x_0\\n

y_t=(1-a)y_{t-1}+ax_t
\]

其中 0<≤1, 根据EM方式的不同a可以有不同的取值:

\[a=\{ {{2\over {s+1}} \qquad span模式 其中s >= 1\\ {1\over{1+c}}\qquad center of mass c>=0 \\ 1-exp^{log0.5\over h} \qquad half-life h > 0 }
\]

举个例子:

In [54]: df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})

In [55]: df
Out[55]:
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0 In [56]: times = ["2020-01-01", "2020-01-03", "2020-01-10", "2020-01-15", "2020-01-17"] In [57]: df.ewm(halflife="4 days", times=pd.DatetimeIndex(times)).mean()
Out[57]:
B
0 0.000000
1 0.585786
2 1.523889
3 1.523889
4 3.233686

本文已收录于 http://www.flydean.com/12-python-pandas-window/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

Pandas高级教程之:window操作的更多相关文章

  1. Pandas高级教程之:GroupBy用法

    Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...

  2. Pandas高级教程之:Dataframe的合并

    目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...

  3. Pandas高级教程之:处理text数据

    目录 简介 创建text的DF String 的方法 columns的String操作 分割和替换String String的连接 使用 .str来index extract extractall c ...

  4. Pandas高级教程之:处理缺失数据

    目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值 ...

  5. Pandas高级教程之:category数据类型

    目录 简介 创建category 使用Series创建 使用DF创建 创建控制 转换为原始类型 categories的操作 获取category的属性 重命名categories 使用add_cate ...

  6. Pandas高级教程之:时间处理

    目录 简介 时间分类 Timestamp DatetimeIndex date_range 和 bdate_range origin 格式化 Period DateOffset 作为index 切片和 ...

  7. Pandas高级教程之:plot画图详解

    目录 简介 基础画图 其他图像 bar stacked bar barh Histograms box Area Scatter Hexagonal bin Pie 在画图中处理NaN数据 其他作图工 ...

  8. Pandas高级教程之:统计方法

    目录 简介 变动百分百 Covariance协方差 Correlation相关系数 rank等级 简介 数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法. 变动百分百 ...

  9. Pandas高级教程之:稀疏数据结构

    目录 简介 Spare data的例子 SparseArray SparseDtype Sparse的属性 Sparse的计算 SparseSeries 和 SparseDataFrame 简介 如果 ...

随机推荐

  1. Zabbix企业分布式监控工具

    前言:在工作中常常需要对服务器进行监控,但是要选择一款合适监控软件可不容易,今天介绍下zabbix这款监控软件 一.Zabbix介绍1.Zabbix是一个企业级的.开源的.分布式的监控套件2.Zabb ...

  2. Lua在Windows下的安装、配置、运行

    Lua在Windows下的安装.配置.运行 本文链接:https://blog.csdn.net/ChinarCSDN/article/details/78667262 展开 # Windows下安装 ...

  3. Java | Stream流、泛型、多线程 | 整理自用

    1.lambda 表达式 lambda 的延迟执行 可以对程序进行优化,尤其是使用 if {} else {} 条件判断,先判断条件是否成立,再传入计算好的参数. functionName( para ...

  4. BEP 7:CUDA外部内存管理插件(上)

    BEP 7:CUDA外部内存管理插件(上) 背景和目标 在CUDA阵列接口使得能够共享不同的Python之间的数据库的访问CUDA设备.但是,每个库都与其它库区别对待.例如: Numba在内部管理内存 ...

  5. springmvc——mvc:annotation-driven标签的作用

  6. 【NX二次开发】Block UI 超级点

    属性说明 属性   类型   描述   常规           BlockID    String    控件ID    Enable    Logical    是否可操作    Group    ...

  7. 超赞!IDEA 最新版本,支持免打扰和轻量模式!

    IntelliJ IDEA 2020.1 的第二个早期访问版本已发布,新的 EAP 构建对调试器和事件探查器(Profiler)进行了改进,并引入了新的提交工具窗口(Commit toolwindow ...

  8. Android Gradle插件

    目录 什么是Gradle 编写方法 buildSrc 基础概念 Extension 自定义Task Plugin Transformer Gradle用处 好文章 常见问题 Gradle插件练习地址: ...

  9. [INS-32033] Central Inventory location is not writable

    这个是因为之前安装过一次图形界面,已经创建过Inventory,所以会报错. 解决:删除oraInventory这个目录.

  10. Room-数据持久化存储(入门)

    @ 目录 一.简单使用 1.Entity 2.Dao 3.DataBase 4.使用 二.参数解析 1.Entity 2.Dao 3.查询方式 总结 # 前言 官方简介: Room 持久性库在 SQL ...