matlab——线性规划
@
前言
线性规划是数学规划中的一个重要分支,常用于解决如何利用现有资源来安排生产,以取得最大经济效益的问题。本文将粗略地介绍线性规划,matlab实现和常见变形。
一、基本概念
一般线性规划问题地(数学)标准型为
y=
\begin{cases}
\sum\limits_{j=1}^na_{ij}x_j=b_i,i=1,2,...,m\\
x_j\geq0,j=1,2,...,n
\end{cases}
\tag{1}
\]
可行解:满足约束条件的解\(x=[x_1,...,x_n]^T\)
最优解:使目标函数达到最大值的可行解
二、matlab实现
1.常用函数
matlab中规定线性规划的标准形式为:
\begin{cases}
\pmb{A\cdot x}\leq \pmb b,\\
Aeq \cdot \pmb x=beq\\
lb\leq x\leq ub
\end{cases}
\]
其中\(\pmb{f,x,b},beq,lb,ub\)为列向量, \(\pmb f\)称为价值向量,\(\pmb b\)称为资源向量;\(\pmb A,Aeq\)为矩阵。
matlab求线性规划的函数为
[x,fval]=linprog(f,A,b);
[x,fval]=linprog(f,A,b,Aeq,beq);
[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub);//如果Aeq,beq不存在用[]代替
注意:
(1)如果是求\(\underset {x}{max}\ \pmb f^T\pmb x\),则需转化为\(\underset {x}{min}\ \pmb {-f}^T\pmb x\),答案为函数求出来的值的相反数。
(2)在得到矩阵\(\pmb {A,b}\)前,要将所有不等式转化为\(\pmb {Ax}\leq \pmb b\)的形式。
2.常见变形
\]
这看起来不是线性规划,但可以通过变换转化成线性规划问题。
注意到对任意\(x_i\),存在\(u_i,v_i\geq 0\)满足
\]
记\(\pmb u=[u_1,...,u_n]^T,\pmb v=[v_1,...,v_n]^T\),于是上述问题转化为
\begin{cases}
\pmb{A\cdot (u-v)}\leq \pmb b,\\
\pmb {u,v}\geq 0.\\
\end{cases}
\]
改写成matlab形式
\begin{cases}
[A,-A]\cdot \left[ \begin{matrix} \pmb u\\\pmb v\end{matrix}\right],\\
\pmb {u,v}\geq 0.\\
\end{cases}
\]
code:
//z=|x1|+2|x2|+3|x3|+4|x4|
f=1:4;
f=[f,f]';
A=[1,-1,-1,1;1,-1,1,-3;1,-1,-2,3];
A=[A,-A];
b=[-2;-1;-0.5];
[y,z]=linprog(f,A,b,[],[],zeros(8,1));
x=y(1:4)-y(5:end)
z
参考书目
《数学建模算法与应用》
matlab——线性规划的更多相关文章
- Matlab线性规划
线性规划 线性规划的标准形式 \[\underset{x}{min}{\ c^Tx}\ s.t.\ Ax \leqslant b\] 例如,线性规划为: \[ \underset{x}{min ...
- Matlab 线性规划问题模型代码
线性规划问题的基本内容 线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题. \[ \min z=\sum_{j=1}^{n} f_{j} x_{j} \] \[ ...
- MATLAB 线性规划实例应用
线性规划 线性规划函数 功能:求解线性规划问题 语法 x = linprog(f,A,b):求解问题 min fx,约束条件为 Ax <= b x = linprog(f,A,b,Aeq,beq ...
- matlab绘图--线性规划图解法示意
matlab绘图--线性规划图解法示意 图解法 matlab绘图 区域填充 线性规划问题: matlab绘图 L1=[4,0;4,4]; plot(L1(:,1),L1(:,2));hold on ...
- 小小知识点(四)——MATLAB如何画等高线图和线性规划约束方程
MATLAB程序: figure contourf(x,y,data) % 画等高线 hold on plot(x,y(x)) %画线性规划约束方程1 hold on plot(y,x(y)) %画线 ...
- 线性规划 Matlab
线性规划的 Matlab 解法 形式 s.t.( subject to) c和 x为n 维列向量, A. Aeq 为适当维数的矩阵,b .beq为适当维数的列向 量. 函数: linprog(c,A, ...
- Matlab的linprog解决简单线性规划问题
一个简单的线性规划问题,使用Matlab的linprog解决 假定有n种煤,各种煤的配比为x1,x2,x3,……首先需要满足下列两个约束条件,即 x1+x2+x3……+xn=1 x1≥0, x2≥0, ...
- yalmip + lpsolve + matlab 求解混合整数线性规划问题(MIP/MILP)
最近建立了一个网络流模型,是一个混合整数线性规划问题(模型中既有连续变量,又有整型变量).当要求解此模型的时候,发现matlab优化工具箱竟没有自带的可以求解这类问题的算法(只有bintprog求解器 ...
- MATLAB规划问题——线性规划和非线性规划
1.线性规划 求线性规划问题的最优解有两种方法,一种方法是使用linprog命令,另一种是使用optimtool工具箱,下面分别介绍这两种方法. ①linprog命令 一般情况下,Linprog命令的 ...
随机推荐
- C# 尝试还原程序包是出错:找不到“XXXXX”版本的程序包“XXXXXX”
在C#管理程序包的时候有时会出现找不到某某版本的程序包 如果出现这样的情况,解决办法是在你当前项目获取当前类库下的packages.config里去删除一段配置就可以解决! 我的缺少的是版本为9.0. ...
- Springboot单元测试@RunWith注解
1.RunWith 注解 RunWith 就是一个运行器 可以在单元测试的时候,自动创建spring的应用上下文 2.正确使用 pom.xml <dependency> <group ...
- TensorRT-优化-原理
TensorRT-优化-原理 一.优化方式 TentsorRT 优化方式: TensorRT优化方法主要有以下几种方式,最主要的是前面两种. 层间融合或张量融合(Layer & Tensor ...
- 转置卷积Transposed Convolution
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...
- 面试官:说一下JVM常用垃圾回收器的特点、优劣势、使用场景和参数设置
今天去看牙医,他问我年级轻轻牙齿怎么磨损这么严重?我说,没有人点赞的这些年,我都是咬着牙过来的. Java中的垃圾回收器几乎是面试中的必考点,无论是面试初级,中级还是高级,总免不了要问一问垃圾回收器的 ...
- postgresql无序uuid性能测试
无序uuid对数据库的影响 由于最近在做超大表的性能测试,在该过程中发现了无序uuid做主键对表插入性能有一定影响.结合实际情况发现当表的数据量越大,对表插入性能的影响也就越大. 测试环境 Postg ...
- 尚硅谷Java——宋红康笔记【day11-day18】
day11 Eclipse中的快捷键: * 1.补全代码的声明:alt + / * 2.快速修复: ctrl + 1 * 3.批量导包:ctrl + shift + o * 4.使用单行注释:ctrl ...
- 【曹工杂谈】Mysql客户端上,时间为啥和本地差了整整13个小时,就离谱
瞎扯一点非技术 本来今天上午就打算写的,结果中途被别的事吸引了注意力,公司和某保险公司合作推了一个医疗保险,让我们给父母买,然后我研究了半天条款:又想起来之前买的支付宝那个好医保,也买了两年多了,但是 ...
- Jenkins 构建自动化 .NET Core 发布镜像
Jenkins 构建自动化 .NET Core 发布镜像 导读 在本章中,将介绍如何在 Linux 下使用 Docker 部署.启动 Jenkins,编写脚本,自动化构建 .NET Core 应用,最 ...
- UBoot的编译与烧写
每当我们学习任何编译语言之前,第一节课都是介绍我们要学习的是什么,以及编译语言和工具,最后写一个小程序编译并运行就算入门,也就是所谓的"Hello, world!".这里也不例外, ...