题解 51nod 1597 有限背包计数问题
题目大意
给出 \(n\),第 \(i\) 个数有 \(i\) 个,问凑出 \(n\) 的方案数。
\(n\le 10^5\)
思路
呜呜呜,傻掉了。。。
首先想到根号分治,分别考虑 \([1,\sqrt n]\) 以及 \([\sqrt n+1,n]\)。
- \([1,\sqrt n]\)
不难看出这部分可以直接 dp,设 \(f_{i,j}\) 为前面 \(i\) 种物品选出重量为 \(j\) 的方案数,可以得到转移式:
\]
- \([\sqrt n+1,n]\)
不难看出这部分最多选出 \(\sqrt n\) 个物品,于是可以设 \(g_{i,j}\) 表示选了 \(i\) 个 物品,选出重量为 \(j\) 的方案数。可以得到转移式:
\]
具体含义就是转移有两种,第一种就是集体右移,即重量为 \(k\) 的都变为 \(k+1\),另外一种就是选 \(\sqrt n+1\)。
综上时空复杂度 \(\Theta(n\log n)\),第一种记得滚动数组,不然会 MLE。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 23333333
#define MAXN 100005
#define MAXM 325
template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,sqr;
int f[2][MAXN],g[MAXM][MAXN],f1[MAXN],f2[MAXN];
/*
f[i][j] 表示前面i个物品选出重量j的方案数,g[i][j]表示i个物品选出重量j的方案数
f[i][j]=f[i-1][j]+f[i][j-i]-f[i-1][j-i*(i+1)]
g[i][j]=g[i][j-i]+g[i-1][j-sqr-1]
*/
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
void Work1 (){
f[0][0] = 1;
for (Int i = 1;i <= sqr;++ i)
for (Int j = 0;j <= n;++ j)
f[i & 1][j] = add (f[i - 1 & 1][j],dec (j >= i ? f[i & 1][j - i] : 0,j >= i * (i + 1) ? f[i - 1 & 1][j - i * (i + 1)] : 0));
for (Int i = 0;i <= n;++ i) f1[i] = f[sqr & 1][i];
}
void Work2 (){
g[0][0] = 1;
for (Int i = 1;i <= sqr;++ i)
for (Int j = 0;j <= n;++ j)
g[i][j] = add (j >= i ? g[i][j - i] : 0,j >= sqr + 1 ? g[i - 1][j - sqr - 1] : 0);
for (Int i = 0;i <= n;++ i)
for (Int j = 0;j <= sqr;++ j) f2[i] = add (f2[i],g[j][i]);
}
signed main(){
read (n),sqr = sqrt (n),Work1(),Work2 ();
int ans = 0;for (Int i = 0;i <= n;++ i) ans = add (ans,1ll * f1[i] * f2[n - i] % mod);
write (ans),putchar ('\n');
return 0;
}
题解 51nod 1597 有限背包计数问题的更多相关文章
- 51nod 1597 有限背包计数问题 (背包 分块)
题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...
- 51Nod 有限背包计数问题 题解报告
首先这道题理论上是可以做到O(nlogn)的,因为OEIS上有一个明显可以用多项式乘法加速的式子 但是由于模数不是很兹磁,所以导致nlogn很难写 在这里说一下O(n*sqrt(n))的做法 首先我们 ...
- 51Nod1957 有限背包计数问题
传送门 另一个传送门 这题还挺有意思…… 先贴一波出题人的题解…… (啥你说你看不见?看来你还没过啊,等着A了再看或者乖乖花点头盾好了……) 然后是我的做法……思想都是一样的,只是细节不一样而已…… ...
- [51nod1597]有限背包计数问题
你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少 两种方案不同当且仅当存在至少一个数i满足第i种物品使用的数量不同 Input 第一行一个正整数n 1 ...
- 2018.09.25 51nod1597 有限背包计数问题(背包+前缀和优化)
传送门 dp好题. 我认为原题的描述已经很清楚了: 你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少. 两种方案不同当且仅当存在至少一个数i满足第i种 ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
- LOJ #6089. 小 Y 的背包计数问题
LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...
- LOJ#6089 小 Y 的背包计数问题 - DP精题
题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...
- LOJ6089 小Y的背包计数问题(根号优化背包)
Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...
随机推荐
- Go并发控制--Channel篇
目录 1. 前言 2. 使用channel控制子协程 2.1 使用场景 2.2 总结 1. 前言 我们考虑这么一种场景,协程A执行过程中需要创建子协程A1.A2.A3-An,协程A创建完子协程后就等待 ...
- pgsql学习
--求所有人的薪水的总和,平均值,最大值,最小值 select sum(sal) , avg(sal), max(sal) , min(sal) from emp; --求总的行数 select co ...
- 查询ES6兼容的网站
http://kangax.github.io/compat-table/es6/ 查询es6兼容的网站
- 高德地图&兴趣点(poi)
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- Robot framework随机文件
*** Variables *** @{Example} One Two Three *** Test Cases *** Example ${value}= Evaluate random.choi ...
- client-go实战之三:Clientset
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- springMVC学习总结(二) --springMVC表单处理、标签库、静态文件处理
根据springMVC学习总结(一) --springMVC搭建 搭建项目 一.表单处理 1.创建两个java类 Student.java, StudentController.java. 2.在js ...
- Docker下制作一个容器镜像
操作过程描述: (1)先基于centos的镜像启动一个centos容器 (2)在这个容器中安装nginx (3)然后把这个已经安装了nginx的容器制作成一个docker的镜像 操作:docker c ...
- Django使用富文本编辑器ckediter
1 - 安装 pip install django-ckeditor 2 - 注册APP ckeditor 3 - 由于djang-ckeditor在ckeditor-init.js文件中使用了JQu ...
- Excel中怎么快速选中区域
连续的表格选定 一张表格中会有不同的部分,若想选择某一个区域的数据的时候我们可以使用快捷键Ctrl+A,这是需要先选中第一个单元格,接着点击Ctrl+A即可选中连续的单元格. 汇总后需要汇 ...