题解 Math teacher's homework
题目大意
给出 \(n,k\) 以及 \(a_{1,2,...,n}\) ,求有多少个 \(m_{1,2,...,n}\) 满足 \(\forall i,m_i\le a_i\) 且 \(\oplus_{i=1}^{n} m_i=k\) 。
\(n\le 50,a_i\le 2^{31}-1\)
思路
这个题目真的很神仙。。。
首先你要想到一点,就是对于二进制下的数,肯定是前面一段都相同,突然某一位 \(a_i=1\) 你 \(m_i=0\) 那么 \(m_i\) 你后面就可以乱选了。然后根据这个我们可以设状态 \(dp[i][len][pre]\) 表示到第 \(i\) 个数,你前面 \(len\) 位不能乱选,其余可以乱选,异或前缀和为 \(pre\) 的方案数。具体转移见代码,自认为理解定义之后就可以理解转移了。然后你发现空间开不下,但是实际上你发现你确定 \(len\) 之后 \(pre\) 前面 \(len-1\) 位就确定了,所以状态可以优化到 \(2\) 。具体见代码。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000003
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int n,m,a[55],pw[35],dp[55][35][2];
int dfs (int i,int pre,int len){
pre &= (~((1 << len) - 1));
if (i > n) return !pre;
int k = (pre & (1 << len)) ? 1 : 0,res = 0,now = 0;
if (~dp[i][len][k]) return dp[i][len][k];
for (Int j = 31;~j;-- j)
if (a[i] & (1 << j)){
res = add (res,mul (pw[min (len,j)],dfs (i + 1,pre ^ now,max (len,j))));
now |= (1 << j);
}
return dp[i][len][k] = res;
}
signed main(){
pw[0] = 1;
for (Int i = 1;i <= 31;++ i) pw[i] = (pw[i - 1] << 1) % mod;
while (~scanf ("%d%d",&n,&m) && (n || m)){
memset (dp,-1,sizeof (dp));
for (Int i = 1;i <= n;++ i) read (a[i]),a[i] ++;
write (dfs (1,m,0)),putchar ('\n');
}
return 0;
}
题解 Math teacher's homework的更多相关文章
- HDU3693 Math Teacher's Homework ---- 数位DP
HDU3693 Math Teacher's Homework 一句话题意 给定$n, k以及m_1, m_2, m_3, ..., m_n$求$x_1 \oplus x_2 \oplus x_3 \ ...
- Math teacher's homework
Title:[Math teacher's homework] Description 题目大意:给你n个数m1,m2...mn,求满足X1 xor X2 xor ... xor Xn=k,0< ...
- POJ 3986 Math teacher's homework
题目 给出\(n,m_1,m_2,...,m_n\),求\(x_1 xor x_2 xor ... xor x_n=k (0 \leq x_i \leq m_i)\)的解的数量.二进制位数小于\(32 ...
- HDU 5068 Harry And Math Teacher
主题链接~~> 做题情绪:的非常高深,有种高大上的感觉. 解题思路: 两层之间的联通能够看成是一个矩阵 代表上下两层都能够联通,,代表下层第1个门与上层第一个门不联通,以此类推联通就能够用矩阵 ...
- HDU 5068 Harry And Math Teacher 线段树+矩阵乘法
题意: 一栋楼有n层,每一层有2个门,每层的两个门和下一层之间的两个门之间各有一条路(共4条). 有两种操作: 0 x y : 输出第x层到第y层的路径数量. 1 x y z : 改变第x层 的 y门 ...
- 题解 math
传送门 赛时用一个奇怪的方法过掉了 首先\(b_i\)的有效范围是\([0, k-1]\) 发现不同的\(a_i*b_i\)会有很多重的 考虑把\(a_i\%k\),然后由小到大排序 按顺序扫,如果某 ...
- 【转载】ACM总结——dp专辑
感谢博主—— http://blog.csdn.net/cc_again?viewmode=list ---------- Accagain 2014年5月15日 动态规划一 ...
- 【DP专辑】ACM动态规划总结
转载请注明出处,谢谢. http://blog.csdn.net/cc_again?viewmode=list ---------- Accagain 2014年5月15日 ...
- 【DP专辑】ACM动态规划总结(转)
http://blog.csdn.net/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间效率高,代码量少,多元性强, ...
随机推荐
- el-upload上传文件和表单一起提交+后端接收代码
目录 一.前言 二.前端页面展示 三.表单代码 四.Data部分 五.JS方法 六.后端接收方式 七.总结 一.前言 我们在做前端时,会遇到这样的需求,上传Excel文件,并且还要和填写的表单数据,一 ...
- WebStorm 2018.3.2 激活方式(永久)
其他版本下载:https://www.jetbrains.com/webstorm/download/other.html 这个适合2018.3.2 第一步:下载补丁包(jar)链接:https:// ...
- 高并发HHTP实践
当今,正处于互联网高速发展的时代,每个人的生活都离不开互联网,互联网已经影响了每个人生活的方方面面.我们使用淘宝.京东进行购物,使用微信进行沟通,使用美图秀秀进行拍照美化等等.而这些每一步的操作下面, ...
- 【CSS】按钮
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Why TypeScript?
本文经作者授权,翻译总结自 TypeScript Team 的成员 orta 的个人博客 <Understanding TypeScript's Popularity>. 原作者: ort ...
- shell循环之跳出循环
1.break break命令允许跳出所有循环(终止执行后面的所有循环). 下面的例子中,脚本进入死循环直至用户输入数字大于5.要跳出这个循环,返回到shell提示符下,需要使用break命令. #! ...
- Python - pip-review 库
使用 pip-review 库(推荐) 安装库 pip install pip-review 检查是否有需要更新的包 > pip-review scikit-learn==0.23.2 is a ...
- Linux - yum 安装软件时被 PackageKit 锁定
问题描述 yum 安装软件的时候报错 sudo yum install netease-cloud-music 已加载插件:fastestmirror, langpacks /var/run/yum. ...
- Kubernetes环境Traefik部署与应用
本作品由Galen Suen采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可.由原作者转载自个人站点. 概述 本文用于整理基于Kubernetes环境的Traefik部署与应用, ...
- IPsec 9个包分析(主模式+快速模式)
第一阶段:ISAKMP协商阶段 1.1 第一包 包1:发起端协商SA,使用的是UDP协议,端口号是500,上层协议是ISAKMP,该协议提供的是一个框架,里面的负载Next payload类似模块,可 ...