题目传送门

题目大意

给出 \(n,k\) 以及 \(a_{1,2,...,n}\) ,求有多少个 \(m_{1,2,...,n}\) 满足 \(\forall i,m_i\le a_i\) 且 \(\oplus_{i=1}^{n} m_i=k\) 。

\(n\le 50,a_i\le 2^{31}-1\)

思路

这个题目真的很神仙。。。

首先你要想到一点,就是对于二进制下的数,肯定是前面一段都相同,突然某一位 \(a_i=1\) 你 \(m_i=0\) 那么 \(m_i\) 你后面就可以乱选了。然后根据这个我们可以设状态 \(dp[i][len][pre]\) 表示到第 \(i\) 个数,你前面 \(len\) 位不能乱选,其余可以乱选,异或前缀和为 \(pre\) 的方案数。具体转移见代码,自认为理解定义之后就可以理解转移了。然后你发现空间开不下,但是实际上你发现你确定 \(len\) 之后 \(pre\) 前面 \(len-1\) 位就确定了,所以状态可以优化到 \(2\) 。具体见代码。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000003 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;} int n,m,a[55],pw[35],dp[55][35][2]; int dfs (int i,int pre,int len){
pre &= (~((1 << len) - 1));
if (i > n) return !pre;
int k = (pre & (1 << len)) ? 1 : 0,res = 0,now = 0;
if (~dp[i][len][k]) return dp[i][len][k];
for (Int j = 31;~j;-- j)
if (a[i] & (1 << j)){
res = add (res,mul (pw[min (len,j)],dfs (i + 1,pre ^ now,max (len,j))));
now |= (1 << j);
}
return dp[i][len][k] = res;
} signed main(){
pw[0] = 1;
for (Int i = 1;i <= 31;++ i) pw[i] = (pw[i - 1] << 1) % mod;
while (~scanf ("%d%d",&n,&m) && (n || m)){
memset (dp,-1,sizeof (dp));
for (Int i = 1;i <= n;++ i) read (a[i]),a[i] ++;
write (dfs (1,m,0)),putchar ('\n');
}
return 0;
}

题解 Math teacher's homework的更多相关文章

  1. HDU3693 Math Teacher's Homework ---- 数位DP

    HDU3693 Math Teacher's Homework 一句话题意 给定$n, k以及m_1, m_2, m_3, ..., m_n$求$x_1 \oplus x_2 \oplus x_3 \ ...

  2. Math teacher's homework

    Title:[Math teacher's homework] Description 题目大意:给你n个数m1,m2...mn,求满足X1 xor X2 xor ... xor Xn=k,0< ...

  3. POJ 3986 Math teacher's homework

    题目 给出\(n,m_1,m_2,...,m_n\),求\(x_1 xor x_2 xor ... xor x_n=k (0 \leq x_i \leq m_i)\)的解的数量.二进制位数小于\(32 ...

  4. HDU 5068 Harry And Math Teacher

    主题链接~~> 做题情绪:的非常高深,有种高大上的感觉. 解题思路: 两层之间的联通能够看成是一个矩阵  代表上下两层都能够联通,,代表下层第1个门与上层第一个门不联通,以此类推联通就能够用矩阵 ...

  5. HDU 5068 Harry And Math Teacher 线段树+矩阵乘法

    题意: 一栋楼有n层,每一层有2个门,每层的两个门和下一层之间的两个门之间各有一条路(共4条). 有两种操作: 0 x y : 输出第x层到第y层的路径数量. 1 x y z : 改变第x层 的 y门 ...

  6. 题解 math

    传送门 赛时用一个奇怪的方法过掉了 首先\(b_i\)的有效范围是\([0, k-1]\) 发现不同的\(a_i*b_i\)会有很多重的 考虑把\(a_i\%k\),然后由小到大排序 按顺序扫,如果某 ...

  7. 【转载】ACM总结——dp专辑

    感谢博主——      http://blog.csdn.net/cc_again?viewmode=list       ----------  Accagain  2014年5月15日 动态规划一 ...

  8. 【DP专辑】ACM动态规划总结

    转载请注明出处,谢谢.   http://blog.csdn.net/cc_again?viewmode=list          ----------  Accagain  2014年5月15日 ...

  9. 【DP专辑】ACM动态规划总结(转)

    http://blog.csdn.net/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间效率高,代码量少,多元性强, ...

随机推荐

  1. 多个mysql同时运行

    一.准备 mysql下载地址 https://dev.mysql.com/downloads/mysql/ 1.下载 2.解压缩 3.创建my.ini [Client] port = 3307 [my ...

  2. 哲学家就餐问题-Java语言实现死锁避免

    哲学家就餐问题-Java语言实现死锁避免 我死锁预防是至少破坏死锁产生的四个必要条件之一,带来的问题就是系统资源利用率低且不符合开发习惯,而死锁避免不是事先釆取某种限制措施破坏死锁的必要条件,只是注意 ...

  3. Java基础(四)——抽象类和接口

    一.抽象类 1.介绍 使用关键字 abstract 定义抽象类. abstract定义抽象方法,只有声明,不用实现. 包含抽象方法的类必须定义为抽象类. 抽象类中可以有普通方法,也可以有抽象方法. 抽 ...

  4. SpringApplication启动-图解

  5. Typescript详解

    typescript由微软开发的一款开源编程语言. ts是jacascript的超集,遵循ES6,ES5规范,ts扩展了js的语法. ts更像后端java,c#这样的面向对象的语言,可以让js开发大型 ...

  6. 放码来战!HMS Core线上Codelabs挑战赛正式开始

    亲爱的开发者,在1024程序员节即将到来之际,HMS Core准备了一场线上Codelabs挑战赛,现向你发出诚挚邀请,希望你能将新奇的想法和对产品的思考融入代码,用技术与世界对话. HMS Core ...

  7. grep、cut、awk、sed的使用

    grep.cut.awk.sed 常常应用在查找日志.数据.输出结果等等,并对我们想要的数据进行提取.通常grep,sed命令是对行进行提取,cut跟awk是对列进行提取 处理海量数据之grep命令 ...

  8. open failed: EACCES (Permission denied)

    出现背景:调用系统相册进行图片展示,但是没有成功,是空白的,且检查权限无问题 解决方法

  9. 最新seo优化技巧

    国内的SEO也发展不少年份了.我是最早开始从事SEO的那一班人.看着这个行业从零开始发展,长大.成熟还谈不上.可以这样说吧,国内做这个行业的,高手并不多.实战的高手更是寥寥无几.当然这个是我个人的推断 ...

  10. Python - 生成requirement.text 文件

    前言 该篇操作笔记摘自小菠萝 Python项目中,一般都会有一个 requirements.txt 文件 这个文件主要是用于记录当前项目下的所有依赖包及其精确的版本号,以方便在一个新环境下更快的进行部 ...