题解 \(by\;zj\varphi\)

对于选的物品,总值一定有在前一段区间递减,后一段递增的性质,那么就可以二分。

check()时只递归归并大的一段,用nth_element即可

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream operator>>(T &x) {
ri f=0;x=0;register char ch=gc();
while(!isdigit(ch)) f|=ch=='-',ch=gc();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=gc();
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e6+7;
int k[N],b[N],n,m;
ll st[N],S,ans=1e18;
bool fg1=1,fg2=1;
inline bool check(register ll mid) {
register ll sum(0);
for (ri i(1);i<=n;p(i)) st[i]=k[i]*mid+b[i];
std::nth_element(st+1,st+n-m,st+n+1);
for (ri i(n-m+1);i<=n;p(i)) {
if (st[i]<=0) continue;
sum+=st[i];
if (sum>=S) return 1;
}
return 0;
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("tst.out","w",stdout);
cin >> n >> m >> S;
for (ri i(1);i<=n;p(i)) {
cin >> k[i] >> b[i];
if (k[i]>=0) fg2=0;
else if (k[i]<0) fg1=0;
}
if (n<=22) {
ri s=(1<<n)-1;
if (!S) {printf("0\n");return 0;}
for (ri i(1);i<=s;p(i)) {
register ll tmpk(0),tmpb(0);
ri nm(0);
for (ri j(0);j<n;p(j)) if ((i>>j)&1) tmpk+=k[j+1],tmpb+=b[j+1],p(nm);
if (nm>m) continue;
if (tmpb>=S) {printf("0\n");return 0;}
if (tmpk<=0) continue;
register ll ts=ceil(1.0*(S-tmpb)/tmpk);
ans=cmin(ans,ts);
}
printf("%lld\n",ans);
} else if (fg2) puts("0");
else {
ri l(0),r(1e9),res;
while(l<=r) {
ri mid(l+r>>1);
if (check(mid)) res=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",res);
}
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $34\; \rm Merchant$的更多相关文章

  1. NOIP 模拟 $34\; \rm Equation$

    题解 \(by\;zj\varphi\) 发现每个点的权值都可以表示成 \(\rm k\pm x\). 那么对于新增的方程,\(\rm x_u+x_v=k\pm x/0\) 且 \(\rm x_u+x ...

  2. NOIP 模拟 $34\; \rm Rectangle$

    题解 \(by\;zj\varphi\) 对于没有在同一行或同一列的情况,直接枚举右边界,左边界从大到小,用树状数组维护上下边界即可. 而对于有多个在一列或一行的情况,这些点将左右分成了几个区间,枚举 ...

  3. noip模拟34[惨败]

    noip模拟34 solutions 我从来不为失败找借口,因为败了就是败了,没人听你诉说任何事情 今天很伤感,以来考试没考好,二来改题改半天也改不出来 这次算是炸出来了我经常范的一些错误,比如除以0 ...

  4. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  5. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  6. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

  7. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

  8. 20190725 NOIP模拟8

    今天起来就是虚的一批,然后7.15开始考试,整个前半个小时异常的困,然后一看题,T1一眼就看出了是KMP,但是完了,自己KMP的打法忘的一干二净,然后开始打T2,T2肝了一个tarjan点双就扔上去了 ...

  9. 20190902+0903合集-NOIP模拟

    一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...

随机推荐

  1. [小技巧] gcc 编译选项-###

    原文译至:http://elinux.org/GCC_Tips 的一小部分. -###编译选项用于查看编译的过程 gcc -### <你的命令行的其他部分放在这里> 你运行的GCC其是一系 ...

  2. kong配置upstream实现简单的负载均衡

    目录 通过konga实现 1. 配置upstream 2. 配置Service发布 3. 配置Route,匹配规则 4. 验证结果 通过 Kong Admin API实现 1. 配置upstream ...

  3. python02篇 字典、元组、切片

    一.字典 1.1 字典的常用方法 # 字典 数据类型 {} key-value # list是挨个循环查找,字典是根据key查找value,比list遍历效率高 d = { 'username': ' ...

  4. 【剑指offer】51.构建乘积数组

    51.构建乘积数组 知识点:数组: 题目描述 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0] * A[1] *... * A[i ...

  5. browse下载插件DownThemAll!

    DownThemAll!是一个不错的下载插件,它安装在各类browse上.

  6. sync/fsync/fdatasync的简单比较

    此文主要转载自 http://blog.csdn.net/zbszhangbosen/article/details/7956558 官网上有关于MySQL的flush method的设置参数说明,但 ...

  7. SpringCloud学习之【Eureka实现服务注册与发现】

    这段时间开始整理之前的SpringCloud实践笔记,这里感谢翟永超大佬的文章SpringCloud从入门到精通的指导. 项目结构 服务注册中心 注意: 1.SpringCloud与SpringBoo ...

  8. 【系统学习ES6】第一节:新的声明方式

    [系统学习ES6] 本专题旨在对ES6的常用技术点进行系统性梳理,帮助大家对其有更好的掌握.计划每周更新1-2篇,希望大家有所收获. 以前用ES5时,声明变量只能用var.ES6的出现,为我们带来了两 ...

  9. Django中F对象,Q对象与运算符

    在Django的模型中F对象与Q对象比较常用的,所以单独说一下: F对象 F对象位于django.dc.models模板下,使用的时候记得首先导入!!! 作用:F对象主要用于当模型的字段A与字段B进行 ...

  10. jvm源码解读--16 cas 用法解析

    CAS的意思是campare and sweep比较交换 这个如果不用代码会比较抽象,那么在源码中进行解释 void ATTR ObjectMonitor::enter(TRAPS) { // The ...