转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1301472836

大致题意:

输入两个十进制正整数a和b,求闭区间 [a ,b] 内有多少个Round number

所谓的Round Number就是把一个十进制数转换为一个无符号二进制数,若该二进制数中0的个数大于等于1的个数,则它就是一个Round Number

注意,转换所得的二进制数,最高位必然是1,最高位的前面不允许有0

规定输入范围: 1<= a <b<=2E

用组合做

很猥琐的题,我首先说说猥琐的地方,再说说解题思路,有四点很猥琐:

(1)规定输入范围: 1<= a <b<=2E

这是一个忽悠人的幌子!!!输入数是大于2E的!!!但却又不是大数!!

网上看很多同学都说要用到精度,其实完全没必要,int能表示21E+的整数,精确的int极限能表示的正整数为2147483647,区区2E小意思.

但是即使这样,面对这题也不能松懈啊! 2E转化为二进制有28位,一般同学都是用一维数组bin[]去存储二进制数的,这个数组的边界你要是定在28、29、30之类的就以为save那就大错特错了!!经过我孜孜不倦的提交,bin[]边界的最小值为35 !!说明了用于测试的数据库是存在超过2E的数的!很多同学就因为这点不断WA(越界问题竟然不是RE,太卑鄙了),但又找不到任何算法错误,郁闷几天。

(2)bin[]数组若果定义为局部数组,等着WA吧!

我找不到任何原因为什么会这样,bin不管是全局定义 还是 局部定义,本地是完全AC的,上传就出问题了,局部WA,全局AC。

人家有强权,我被迫把传参del掉,把bin改为全局,郁闷!猥琐!

(3)组合数打表,同(1)的猥琐,c[][]边界的最小值为33,就是说如果定义组合表的大小比

c[33][33]小的,就等着RE吧!  我一开始很小白的定义了c[29][29]。。。。呼吁大家别为别人的服务器省空间了= =

还有就是这个算法有一个违背常识的处理,要把c[0][0]=1,不然某些最终结果会少1

(4)输入不能用循环输入while(cin>>…),不然你就等着OLE (就是Output Limit Excessed,很少见吧!)。不知道数据库是怎么回事,输入竟然不会根据读取数据结束而结束,而是无限输出最后一次输入所得的结果……老老实实一次输出就end file吧!

解题思路:

组合数学题,不知道为什么会被归类到递推数学,可能是因为杨辉三角和组合数之间的关系。。。

我根据我写的程序讲解好了

要知道闭区间 [a ,b] 内有多少个Round number,只需要分别求出

闭区间 [0 ,a] 内有T个RN

闭区间 [0 ,b+1] 内有S个RN

再用 S – T 就是闭区间 [a ,b] 内的RN数了

至于为什么是 b+1,因为对于闭区间 [0 ,k] ,我下面要说的算法求出的是比k小的RN数,就是说不管 k是不是RN, 都没有被计算在内,所以若要把闭区间[a ,b]的边界a和b都计算在内,就要用上述的处理方法。

现在问题的关键就是如何求[0 ,k]内的RN数了

首先要把k转化为二进制数bin-k,并记录其位数(长度)len

那么首先计算长度小于len的RN数有多少(由于这些数长度小于len,那么他们的值一定小于k,因此在进行组合时就无需考虑组合所得的数与k之间的大小了)

for(i=1;i<bin[0]-1;i++)         //bin[0]记录的是二进制数的长度len

              for(j=i/2+1;j<=i;j++)

                     sum+=c[i][j];

可以看到,i<len-1 ,之所以减1,是因为这些长度比len小的数,最高位一定是1,那么剩下可供放入数字的位数就要再减少一个了

这条程序得到的sum为

1表示当前处理的二进制数的最高位,X表示该二进制数待放入数字的位

显然这段程序把  二进制数0  排除在外了,这个是最终结果没有影响的,因为最后要把区间[a , b]首尾相减,0存不存在都一样了。

然后计算长度等于len的RN数有多少(由于这些数长度等于len,那么他们的值可能小于k,可能大于k,因此在进行组合时就要考虑组合所得的数与k之间的大小了)

int zero=0;  //从高位向低位搜索过程中出现0的位的个数

       for(i=bin[0]-1;i>=1;i--)

              if(bin[i])   //当前位为1

                     for(j=(bin[0]+1)/2-(zero+1);j<=i-1;j++)

                            sum+=c[i-1][j];

              else

                     zero++;

之所以初始化i=bin[0]-1,是因为bin[]是逆向存放k的二进制的,因此要从高位向低位搜索,就要从bin[]后面开始,而要 bin[0]-1 是因为默认以后组合的数长度为len,且最高位为1,因此最高位不再搜索了。

那么问题的关键就是怎样使得以后组合的数小于k了

这个很简单:

从高位到低位搜索过程中,遇到当前位为0,则不处理,但要用计数器zero累计当前0出现的次数

遇到当前位为1,则先把它看做为0,zero+1,那么此时当前位 后面的 所有低位任意组合都会比k小,找出这些组合中RN的个数,统计完毕后把当前位恢复为原来的1,然后zero-1,继续向低位搜索

那么问题就剩下 当当前位为1时,把它看做0之后,怎样去组合后面的数了

此时组合要考虑2个方面:

(1)       当前位置i后面允许组合的低位有多少个,我的程序由于bin是从bin[1]开始存储二进制数的,因此 当前位置i后面允许组合的低位有i-1个

(2)       组合前必须要除去前面已出现的0的个数zero

我的程序中初始化j=(bin[0]+1)/2-(zero+1), j本来初始化为(bin[0]+1)/2就可以了,表示对于长度为bin[0]的二进制数,当其长度为偶数时,至少其长度一半的位数为0,它才是RN,当其长度为奇数时,至少其长度一半+1的位数为0,它才是RN。

但是现在还必须考虑前面出现了多少个0,根据前面出现的0的个数,j的至少取值会相应地减少。  -(zero+1) ,之所以+1,是因为要把当前位bin[i]看做0

然后到了最后,剩下一个问题就是怎样得到每一个 的值,这个我发现很多同学都是利用打表做的,利用的就是 组合数 与 杨辉三角 的关系(建立一个二维数组C[n]

就能看到他们之间关系密切啊!区别就是顶点的值,杨辉三角为1,组合数为0)

其实这个“关系”是有数学公式的

好好体会一下吧!

其实组合数也可以直接用计算方法做(n的规模可以至少扩展到1000),不过这里n的规模只有26,打表应该是更快的,有兴趣学习用计算方法做组合数的同学可以联系我,这个要用另外的数学方法处理。

我QQ289065406    O(∩_∩)O哈哈~

#include<map>
#include<set>
#include<list>
#include<cmath>
#include<ctime>
#include<deque>
#include<stack>
#include<bitset>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<numeric>
#include<sstream>
#include<utility>
#include<iostream>
#include<algorithm>
#include<functional> using namespace std ;
int c[ 40 ][ 40 ] = { 0 } ;
int bin[ 40 ] ;//十进制n的二进制数
/*打表,计算C( M , N )*/
void play_table()
{
for( int i = 0 ; i <= 32 ; ++i )
{
for( int j = 0 ; j <= i ; ++j )
{
if( !j || i == j )
c[ i ][ j ] = 1 ;
else
c[ i ][ j ] = c[ i - 1 ][ j - 1 ] + c[ i - 1 ][ j ] ;
}
}
}
/*十进制n转换二进制,逆序存放到bin[]*/
void dec_to_bin( int n )
{
bin[ 0 ] = 0 ;//b[0]是二进制数的长度
while( n )
{
bin[ ++bin[ 0 ] ] = n % 2 ;
n /= 2 ;
}
} /*计算比十进制数n小的所有RN数*/
int round( int n )
{
int i , j ;
int sum = 0 ;//比十进制数n小的所有RN数
dec_to_bin( n ) ;
/*计算长度小于bin[0]的所有二进制数中RN的个数*/
for( i = 1 ; i < bin[ 0 ] - 1 ; ++i )
{
for( j = i / 2 + 1 ; j <= i ; ++j )
{
sum += c[ i ][ j ] ;
}
}
/*计算长度等于bin[0]的所有二进制数中RN的个数*/
int zero = 0 ; //从高位向低位搜索过程中出现0的位的个数
for( i = bin[ 0 ] - 1 ; i >= 1 ; --i )
{
if( bin[ i ] ) //当前位为1
{
for( j = ( bin[ 0 ] + 1 ) / 2 - ( zero + 1 ) ; j <= i - 1 ; ++j )
sum += c[ i - 1 ][ j ] ;
}
else
zero++ ;
}
return sum ;
} int main()
{
play_table() ;
int a , b ;
cin >> a >> b ;
cout << round( b + 1 ) - round( a ) << endl ;
return 0;
}

Round Numbers的更多相关文章

  1. 【BZOJ1662】[Usaco2006 Nov]Round Numbers 圆环数 数位DP

    [BZOJ1662][Usaco2006 Nov]Round Numbers 圆环数 Description 正如你所知,奶牛们没有手指以至于不能玩"石头剪刀布"来任意地决定例如谁 ...

  2. POJ 3252 Round Numbers

     组合数学...(每做一题都是这么艰难) Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7607 A ...

  3. [BZOJ1662][POJ3252]Round Numbers

    [POJ3252]Round Numbers 试题描述 The cows, as you know, have no fingers or thumbs and thus are unable to ...

  4. Round Numbers(组合数学)

    Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10484 Accepted: 3831 Descri ...

  5. POJ 3252 Round Numbers(组合)

    题目链接:http://poj.org/problem?id=3252 题意: 一个数的二进制表示中0的个数大于等于1的个数则称作Round Numbers.求区间[L,R]内的 Round Numb ...

  6. poj3252 Round Numbers

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7625   Accepted: 2625 Des ...

  7. bzoj1662: [Usaco2006 Nov]Round Numbers 圆环数

    Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺序.她们甚至也不能通过仍硬币的方式. 所以她们通过"round number" ...

  8. Round Numbers (排列组合)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7558   Accepted: 2596 Description The c ...

  9. BZOJ1662: [Usaco2006 Nov]Round Numbers

    1662: [Usaco2006 Nov]Round Numbers Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 147  Solved: 84[Sub ...

  10. [ACM] POJ 3252 Round Numbers (的范围内的二元0数大于或等于1数的数目,组合)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8590   Accepted: 3003 Des ...

随机推荐

  1. Python函数式编程:Lambda表达式

    首先我们要明白在编程语言中,表达式和语句的区别. 表达式是一个由变量.常量.有返回值的函数加运算符组成的一个式子,该式子是有返回值的 ,如  a + 1 就是个表达式, 单独的一个常量.变量 或函数调 ...

  2. HDU Good Numbers (热身赛2)

    转载请注明出处:http://blog.csdn.net/a1dark 分析:一道水题.找下规律就OK了.不过要注意特判一下0.因为0也是good number.这个把我坑惨了= =||| #incl ...

  3. Java--日期的使用

    Date 类: 最基础的日期时间类,返回一个相对日期的毫秒数.精确到毫秒,但不支持日期的国际化和分时区显示. Calender类: 相对于Date更加强大的时间类,是抽象类,提供了常规的日期修改功能和 ...

  4. 17.1.1.7 Setting Up Replication with New Master and Slaves 设置复制对于新的Master和Slaves:

    17.1.1.7 Setting Up Replication with New Master and Slaves 设置复制对于新的Master和Slaves: 最简单和最直接的方法是设置复制用于使 ...

  5. oschina插件和扩展

    Eclipse插件 2551FireFox插件 14IE插件 19Prototype扩展 220Chrome插件/扩展 72WordPress插件 33NetBeans插件 12IDEA插件 25Xc ...

  6. 自定义Log4cpp的日志输出格式

    // 1. 实例化一个PatternLayout对象 log4cpp::PatternLayout* pLayout = new log4cpp::PatternLayout(); // 2. 实例化 ...

  7. 【转】linux命令useradd添加用户详解

    在linux中增加用户我们使用useradd命令而删除用户直接使用userdel即可了,下面小编来给各位同学介绍一下在linux中添加与删除用户方法吧.   1.作用 useradd或adduser命 ...

  8. C/C++取出变量的每一位的值(第一次知道还有QBitArray)

    前写程序最多也只是字节级别操作,用char和memcpy进行一系列内存操作.此次一个sdk,其状态值直接是每位一个标示,所以需要取出每位进行操作.当然CPP也有丰富的位运算操作,但是虽然也学过,知道意 ...

  9. windows phone 8的新特性

    <1>硬件的升级WP8在硬件上有了极大的提升,处理器支持双核或多核 理论最大支持64核,分辨率支持800x480.1280x720/768,屏幕支持720p或WXGA:支持存储卡扩展.同时 ...

  10. 【Cron Expressions】Quartz Scheduler 2.1.x 英文节选

    Cron Expressions Cron-Expressions are used to configure instances ofCronTrigger. Cron-Expressions ar ...