题目链接

1857: [Scoi2010]传送带

Time Limit: 1 Sec  Memory Limit: 64 MB
Submit: 934  Solved: 501
[Submit][Status][Discuss]

Description

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

Input

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

Output

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

Sample Input

0 0 0 100
100 0 100 100
2 2 1

Sample Output

136.60
 
三分套三分就可以了
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
double xa, xb, xc, xd, ya, yb, yc, yd, p, q, r;
double dis(double x1, double y1, double x2, double y2) {
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double ternary(double x, double y) {
double lx = xc, ly = yc, rx = xd, ry = yd;
while(fabs(rx-lx)>eps || fabs(ry-ly)>eps) {
double x1 = lx+(rx-lx)/, x2 = lx+(rx-lx)/*;
double y1 = ly+(ry-ly)/, y2 = ly+(ry-ly)/*;
double tmp1 = dis(x, y, x1, y1)/r+dis(x1, y1, xd, yd)/q+dis(x, y, xa, ya)/p;
double tmp2 = dis(x, y, x2, y2)/r+dis(x2, y2, xd, yd)/q+dis(x, y, xa, ya)/p;
if(tmp1>tmp2) {
lx = x1, ly = y1;
} else {
rx = x2, ry = y2;
}
}
return dis(x, y, lx, ly)/r+dis(lx, ly, xd, yd)/q+dis(x, y, xa, ya)/p;
}
double solve() {
double lx = xa, rx = xb, ly = ya, ry = yb;
while(fabs(rx-lx)>eps || fabs(ry-ly)>eps) {
double x1 = lx+(rx-lx)/, x2 = lx+(rx-lx)/*;
double y1 = ly+(ry-ly)/, y2 = ly+(ry-ly)/*;
double tmp1 = ternary(x1, y1), tmp2 = ternary(x2, y2);
if(tmp1>tmp2) {
lx = x1, ly = y1;
} else {
rx = x2, ry = y2;
}
}
return ternary(lx, ly); }
int main()
{
cin>>xa>>ya>>xb>>yb>>xc>>yc>>xd>>yd>>p>>q>>r;
double ans = solve();
printf("%.2f\n", ans);
return ;
}

bzoj 1857: [Scoi2010]传送带 三分的更多相关文章

  1. Bzoj 1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  2. BZOJ 1857: [Scoi2010]传送带

    二次联通门 : BZOJ 1857: [Scoi2010]传送带 /* BZOJ 1857: [Scoi2010]传送带 三分套三分 可能是吧..dalao们都说明显是一个单峰函数 可是我证不出来.. ...

  3. BZOJ 1857: [Scoi2010]传送带(三分套三分)

    Time Limit: 1 Sec Memory Limit: 64 MB Submit: 2549 Solved: 1370 [Submit][Status][Discuss] Descriptio ...

  4. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  5. 【BZOJ】1857: [Scoi2010]传送带(三分)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1857 好神奇的三分.. 第一次写三分啊sad..看了题解啊题解QAQ 首先发现无论怎么走一定是在AB ...

  6. BZOJ 2131 [scoi2010] 传送带

    @(BZOJ)[三分法] Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段. 两条传送带分别为线段AB和线段CD. lxhgww在AB上的移动速度为P,在CD上的移 ...

  7. 洛谷P2571 [SCOI2010]传送带 [三分]

    题目传送门 传送带 题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移 ...

  8. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  9. [BZOJ1857][SCOI2010]传送带-[三分]

    Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...

随机推荐

  1. iOS UISearchBar学习笔记

    UISearchBar 是一个搜索控件,它提供了一个文本输入框,一个查找button,一个书签button.一个取消button.我们须要使用UISearchBarDelegate代理来进行查找工作. ...

  2. wing 5.0 注册机

    输入License id 进入下一页获得request key ,输入request key 后点击生成,即可生成激活码,亲测可用 下载链接 密码:adwj

  3. 从UIImage的矩阵变换看矩阵运算的原理

    1.矩阵的基本知识: struct CGAffineTransform {  CGFloat a, b, c, d;  CGFloat tx, ty;}; CGAffineTransform CGAf ...

  4. 红豆带你从零学C#系列之:使用集合组织相关数据

    ArrayList(数组列表) Why:如果一个公司有5名员工,一般我们会用长度为5的对象数组来存储信息,但要是有新员工来了,5个长度的数组就不够用了,因此我们需要一种能够根据需要自动分配容量的动态数 ...

  5. SGU 310. Hippopotamus( 状压dp )

    题目大意:给N块板, 有A,B2种类型的板, 要求任意M块连续的板中至少有K块B板.1≤n≤60,1≤m≤15,0≤k≤m≤n. dp(x, s)表示第x块板, x前M块板的状态为s, 然后合法状态转 ...

  6. OpenGL学习之windows下安装opengl的glut库

    OpenGL学习之windows下安装opengl的glut库 GLUT不是OpenGL所必须的,但它会给我们的学习带来一定的方便,推荐安装.  Windows环境下的GLUT下载地址:(大小约为15 ...

  7. less 工具

    less 工具也是对文件或其它输出进行分页显示的工具,应该说是linux正统查看文件内容的工具,功能极其强大.less 的用法比起 more 更加的有弹性.在 more 的时候,我们并没有办法向前面翻 ...

  8. poj 1206

    /** 题意: 给定一序列,置换k次之后 输出其状态 置换: 考察循环节长度, 思路: 分别求出每个元素的循环节的大小,用k 模其大小,大的k次之后的位置, 输出即可 **/ #include < ...

  9. nyist 500 一字棋

    题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=500 这太并不难,只要把情况分清楚就可以了,本人由于考虑不是很周全,WA了n次....悲 ...

  10. SQL 时间戳

    一直对时间戳这个概念比较模糊,相信有很多朋友也都会误认为:时间戳是一个时间字段,每次增加数据时,填入当前的时间值.其实这误导了很多朋友. 1.基本概念 时间戳:数据库中自动生成的唯一二进制数字,与时间 ...