LCM Walk

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 47    Accepted Submission(s): 31

Problem Description
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯ from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!

 
Input
First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.
⋅ 1≤ex,ey≤109.

 
Output
For every test case, you should output "Case #x: y", where x indicates the case number and counts from 1 and y is the number of possible starting grids.
 
Sample Input
3
6 10
6 8
2 8
 
Sample Output
Case #1: 1
Case #2: 2
Case #3: 3
 
Source
 
 

2015acm上海区域赛的第三道水题。。第一开始以为是推公式然后o(1)求出答案,然而貌似并不能,最后还是想了个暴力枚举公因子吧。。

容易得知,x,y里面肯定是较小的数不变,较大的那个数是从之前某个数变化来的,假设x>y,(x,y)是从(x1,y)变化来的,那么:

x = x1 + x1*y/gcd(x1,y);则x1 = x/(1 + y/gcd(x1,y));

那么就很好说了,枚举gcd(x1,y),即枚举y的因子,反求出x1,然后判断x1是否合理,合理的话就继续递归(x1,y),这里枚举因子有一个细节需要

注意,就是对于y是完全平方数的时候,枚举上界是sqrt(y-0.5),然后对于x = sqrt(y)的情况特判,因为忘了注意这点此贡献了一次WA。。

为什么要这样子呢。。因为O(根号n)枚举因子时,如果i是y的因子,那么y/i也是y的因子,这里要判断两个因子,但是i*i=y时,必须只判断一次

#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <cmath>
using namespace std; int t;
int x,y;
int ans; int gcd(int x, int y)
{
return x == ?y : gcd(y%x,x);
} void dfs(int x, int y)
{
ans++;
if(x < y) swap(x,y);
int p = sqrt(y - 0.5);
int i;
for(i = ; i <= p; ++i)
{
if(y % i == )
{
if(x%(+y/i) == &&gcd(x/(+y/i),y) == i) dfs(x/(+y/i),y);
if(x%(+i) == &&gcd(x/(+i),y) == y/i) dfs(x/(+i),y);
}
}
if(i*i == y)
{
if(x%(+i) == &&gcd(x/(+i),y) == i) dfs(x/(+i),y);
}
} int main()
{
int cas = ;
for(cin >> t; cas <= t; ++cas)
{
ans = ;
scanf("%d%d",&x,&y);
dfs(x,y);
printf("Case #%d: %d\n",cas,ans);
}
}

HDU5584 LCM Walk 数论的更多相关文章

  1. hdu-5584 LCM Walk(数论)

    题目链接:LCM Walk Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others)To ...

  2. L - LCM Walk HDU - 5584 (数论)

    题目链接: L - LCM Walk HDU - 5584 题目大意:首先是T组测试样例,然后给你x和y,这个指的是终点.然后问你有多少个起点能走到这个x和y.每一次走的规则是(m1,m2)到(m1+ ...

  3. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  4. [HDOJ5584]LCM Walk(数论,规律)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 给一个坐标(ex, ey),问是由哪几个点走过来的.走的规则是x或者y加上他们的最小公倍数lcm ...

  5. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  6. LCM Walk HDU - 5584

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  7. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

  8. HDU 5584 LCM Walk(数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5584 题意:(x, y)经过一次操作可以变成(x+z, y)或(x, y+z)现在给你个点(ex, e ...

  9. hdu 5584 LCM Walk

    没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...

随机推荐

  1. MySQL 遇到的问题:在服务里找不到自己的 MySQL,以及在命令行窗口中运行服务出现的问题。

    1.用数据库的时候在服务里找不到自己的 MySQL ,于是就想用命令行窗口去运行. ①.在开始里,键入 cmd ,打开命令行窗口. ②.输入:mysql -u root -p 回车,这时会提示请输入密 ...

  2. 关于ThinkPHP控制器的方法失效的问题

    今天发现控制器的方法失效了,用了排除法,找了长时间的原因,都没有找出来,后来干脆把home模块中的控制器和视图文件都复制到bbs模块下,竟然也不行. 这说明了控制器和视图没有问题,一定是模块的配置有问 ...

  3. 二、MLlib统计指标之关联/抽样/汇总

    汇总统计[Summary statistics]: Summary statistics提供了基于列的统计信息,包括6个统计量:均值.方差.非零统计量个数.总数.最小值.最大值. import org ...

  4. JAXB--学习1

    一.简介 JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生Java类的技术.该过程中,JAXB也提供了将XML实 ...

  5. NetAnalyzer笔记 之 十 通过邮件方式打造自己的bug反馈模块(C#)

    在软件发布后,有个好的反馈系统,对我们后续的软件开发有着至关重要的影响,现今软件异常反馈功能模块已经成了软件中重要的组成部分了.但是对于个人软件开发者,尤其是对于我这种贫民个人软件开发者却是个不小的难 ...

  6. 获得HttpServletResponse及其他对象

    下面只列出获得 HttpServletResponse 对象的方法,获得 HttpServletRequest 对象方法类似. 在struts1.x Action类的execute方法中,有四个参数, ...

  7. 50个android开发技巧

    50个android开发技巧 http://blog.csdn.net/column/details/androidhacks.html

  8. (四)《Java编程思想》——可变参数列表

    以object数组为参数的方法实现可变参数列表 package chapter5; /** * 以object数组为参数的方法实现可变参数列表 */ class A { } public class ...

  9. htm初学笔记

    一.什么是html HTML(HyperText Markup Language):超文本标记语言,一种纯文本类型的语言 --使用带有尖括号的“标记”将网页中的内容逐一标识出来 用来设计网页的标记语言 ...

  10. Android -------- RelativeLayout 和 LinearLayout 的性能分析

    布局的绘制角度 RelativeLayout不如LinearLayout快的根本原因是: RelativeLayout需要对其子View进行两次measure过程, 而LinearLayout则只需一 ...