Description

The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortunately, due to cutbacks, they can afford to hire only one driver to do the deliveries. He will wait for  or more (up to ) orders to be processed before he starts any deliveries. Needless to say, he would like to take the shortest route in delivering these goodies and returning to the pizzeria, even if it means passing the same location(s) or the pizzeria more than once on the way. He has commissioned you to write a program to help him.

Input

Input will consist of multiple test cases. The first line will contain a single integer n indicating the number of orders to deliver, where  ≤ n ≤ . After this will be n +  lines each containing n +  integers indicating the times to travel between the pizzeria (numbered ) and the n locations (numbers  to n). The jth value on the ith line indicates the time to go directly from location i to location j without visiting any other locations along the way. Note that there may be quicker ways to go from i to j via other locations, due to different speed limits, traffic lights, etc. Also, the time values may not be symmetric, i.e., the time to go directly from location i to j may not be the same as the time to go directly from location j to i. An input value of n =  will terminate input.

Output

For each test case, you should output a single number indicating the minimum time to deliver all of the pizzas and return to the pizzeria.

Sample Input


Sample Output


Source

 
inf开太大竟然WA了!!!

【题目大意】类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。求最短距离。

【解析】可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过

【状态表示】dp[state][i]表示到达i点状态为state的最短距离

【状态转移方程】dp[state][i] =min{dp[state][i],dp[state'][j]+dis[j][i]} dis[j][i]为j到i的最短距离

【DP边界条件】dp[state][i] =dis[0][i]  state是只经过i的状态

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 16
#define M 1<<N
#define inf 1<<26
int n;
int mp[N][N];
void flyod(){
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
}
}
}
}
}
int dp[M][N];
int main()
{
while(scanf("%d",&n)==){
if(n==)
break; for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&mp[i][j]);
}
}
flyod(); //int m=1<<n;
//memset(dp,inf,sizeof(dp));
for(int S=;S<(<<n);S++){//i表示状态
for(int i=;i<=n;i++){
if(S&(<<(i-))){
if(S==(<<(i-))){
dp[S][i]=mp[][i];
}
else{
dp[S][i]=(int)inf;
for(int j=;j<=n;j++){
if(S&(<<(j-)) && j!=i){
dp[S][i]=min(dp[S][i],dp[S^(<<(i-))][j]+mp[j][i]);
}
}
}
}
}
}
int ans=dp[(<<n)-][]+mp[][];
for(int i=;i<=n;i++){
ans=min(ans,dp[(<<n)-][i]+mp[i][]);
}
printf("%d\n",ans);
}
return ;
}

无耻地贴上大神的代码

 #include<iostream>
#define INF 100000000
using namespace std;
int dis[][];
int dp[<<][];
int n,ans,_min;
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) && n)
{
for(int i = ;i <= n;++i)
for(int j = ;j <= n;++j)
scanf("%d",&dis[i][j]);
for(int k = ;k <= n;++k)
for(int i = ;i <= n;++i)
for(int j = ;j <=n;++j)
if(dis[i][k] + dis[k][j]< dis[i][j])
dis[i][j] = dis[i][k] +dis[k][j]; for(int S = ;S <= (<<n)-;++S)//枚举所有状态,用位运算表示
for(int i = ;i <= n;++i)
{
if(S & (<<(i-)))//状态S中已经过城市i
{
if(S ==(<<(i-))) dp[S][i] =dis[][i];//状态S只经过城市I,最优解自然是从0出发到i的dis,这也是DP的边界
else//如果S有经过多个城市
{
dp[S][i] = INF;
for(int j = ;j <=n;++j)
{
if(S &(<<(j-)) && j != i)//枚举不是城市I的其他城市
dp[S][i] =min(dp[S^(<<(i-))][j] + dis[j][i],dp[S][i]);
//在没经过城市I的状态中,寻找合适的中间点J使得距离更短
}
}
}
}
ans = dp[(<<n)-][] + dis[][];
for(int i = ;i <= n;++i)
if(dp[(<<n)-][i] + dis[i][] < ans)
ans = dp[(<<n)-][i] +dis[i][];
printf("%d\n",ans);
}
return ;
}

poj 3311 Hie with the Pie(状态压缩dp)的更多相关文章

  1. poj3311 Hie with the Pie (状态压缩dp,旅行商)

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3160   Accepted: 1613 ...

  2. POJ 3311 Hie with the Pie (状压DP)

    dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...

  3. POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

    题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...

  4. POJ 3311 Hie with the Pie (BFS+最短路+状态压缩)

    题意:类似于TSP问题,只是每个点可以走多次,求回到起点的最短距离(起点为点0). 分析:状态压缩,先预处理各点之间的最短路,然后sum[i][buff]表示在i点,状态为buff时所耗时...... ...

  5. poj 3311 Hie with the Pie

    floyd,旅游问题每个点都要到,可重复,最后回来,dp http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Me ...

  6. POJ 3311 Hie with the Pie(状压DP + Floyd)

    题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizz ...

  7. POJ 3311 Hie with the Pie floyd+状压DP

    链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多 ...

  8. poj 3311 Hie with the Pie (TSP问题)

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4491   Accepted: 2376 ...

  9. POJ 3311 Hie with the Pie 最短路+状压DP

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11243   Accepted: 5963 ...

随机推荐

  1. Objective-C中NSString和NSMutableString的基本用法

    int main(int argc, const char * argv[]) { @autoreleasepool { //----------------NSString------------- ...

  2. Uninstall or Disable Java on a Mac

    You can run Java apps in two ways. The first is to run Java applets inside your Web browser with a p ...

  3. 华为測试 字符串运用-password截取

    Catcher是MCA国的情报员,他工作时发现敌国会用一些对称的password进行通信,比方像这些ABBA.ABA,A,123321,可是他们有时会在開始或结束时增加一些无关的字符以防止别国破解.比 ...

  4. Java实现将指定目录内的指定类型的文件归类

    这两天在学Java IO流,正好让我产生了将自己的电子书归类的打算,说做就做,Why not?看着自己所学所用能解决生活中的实际问题,是不是非常有成就感,那是必须的! package DepthSea ...

  5. 笔记--cocos2d-x 3.0 环境搭建

    一.下载资源工具 1.下载cocos2d-x 3.0  官网地址:http://www.cocos2d-x.org/filedown/cocos2d-x-3.0-cn 2.下载VS2012 地址网上搜 ...

  6. [Unit Testing] Directive testing, require parent controller

    function getCompiledElement() { $scope.chart = { additional: "$ 1.56 / per minute", text: ...

  7. Java / Android H基于ttp多线程下载的实现

    转载请注明出处:http://blog.csdn.net/lmj623565791/article/details/26994463 有个朋友须要个多线程如今的样例,就帮忙实现了.在此分享下~ 先说下 ...

  8. 解开Android应用程序组件Activity的"singleTask"之谜

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6714543 在Android应用程序中,可以配 ...

  9. 浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6621566 上一篇文章Android进程间通信 ...

  10. 1217.1——OC准备

    #import 与 #include区别 include完成头文件的导入,可能会导致头文件的相互引用和函数或变量的重复定义 为了解决这个问题 我们必须这样做 #ifndef Student_h #de ...