BZOJ3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 67 Solved: 39
[Submit][Status]
Description
The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.
Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.
The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.
Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5
Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.
If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.
If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.
有N头牛,分别用1……N表示,排成一行。
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
例如:有5头牛
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……
现在,已知N头牛的排列方式,求这种排列方式的行号。
或者已知行号,求牛的排列方式。
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
如果,行号是3,则排列方式为1 2 4 3 5
如果,排列方式是 1 2 5 3 4 则行号为5
有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。
Input
* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.
If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.
第1行:N和K
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。
Output
* Lines 1..K: Line i will contain the answer to query i.
If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.
If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号
Sample Input
P
3
Q
1 2 5 3 4
Sample Output
5
HINT
Source
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 500+100
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
ll n,m,a[],b[],fac[];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();
fac[]=;
for(ll i=;i<n;i++)fac[i]=fac[i-]*i;
char ch;
while(m--)
{
ch=' ';
while(ch!='P'&&ch!='Q')ch=getchar();
for1(i,n)a[i]=;
if(ch=='P')
{
ll x=read()-;
for1(i,n)
{
ll t=x/fac[n-i]+,j=,k;
for(k=;j<t;k++)if(!a[k])j++;
a[k-]=;b[i]=k-;
x%=fac[n-i];
}
for1(i,n-)printf("%d ",b[i]);printf("%d\n",b[n]);
}
else
{
for1(i,n)b[i]=read();
ll x=;
for1(i,n)
{
ll j=,k;
for(k=;k<b[i];k++)if(!a[k])j++;
a[k]=;
x+=j*fac[n-i];
}
printf("%lld\n",x);
}
}
return ;
}
BZOJ3301: [USACO2011 Feb] Cow Line的更多相关文章
- 3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 82 Solved: 49[Submit ...
- 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)
http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...
- [BZOJ] 3301: [USACO2011 Feb] Cow Line
康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...
- [USACO2011 Feb] Cow Line
原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...
- 【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字
2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 138 Solved: 97 ...
- BZOJ3300: [USACO2011 Feb]Best Parenthesis
3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 89 Solved: 42 ...
- 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树
[BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...
随机推荐
- (转)Maven实战(三)Eclipse构建Maven项目
1. 安装m2eclipse插件 要用Eclipse构建Maven项目,我们需要先安装meeclipse插件 点击eclipse菜单栏Help->Eclipse Marketplac ...
- unity3d Find()使用
1. Hierarchy 创建对象如两个cube时,未修改名称,名称都为cube时. js添加至Camera: private var cubeObj : GameObject; //private ...
- Android开发中,有哪些让你觉得相见恨晚的方法、类或接口?
ThumbnailUtils.extractThumbnail(bitmap, width, height); 压缩图片到指定大小的方法,以前都是一次次的createbitmap,然后用matrix去 ...
- Android Back Home键监听
Android Back Home键监听 Back键的监听 对于Back键的监听比较容易,可以在多个系统回调处拦截,比如在activity的下列方法中都可以收到Back键按下的事件: @Overrid ...
- HDU 5139 Formula 卡内存
题目就是求这个 n达到10^7,测试数据组数为10^5 为了防止TLE,一开始把每个n对应的值先求出来,但发现竟然开不了10^7的数组(MLE),然后就意识到这是第一道卡内存的题目... 只能离线做, ...
- VideoView 视频播放 示例
介绍 实现的功能: 可播放本地视频或网络视频,可控制播放或暂停 最小化时保存播放位置及播放状态,resume时恢复所有状态: 横竖屏切换时保持切换前的位置及状态 在屏幕上竖直滑动可调节屏幕亮度和音量 ...
- MVC bundles
Bundles用于打包CSS和javascript脚本文件,优化对它们的组织管理.显示模式则允许我们为不同的设备显示不同的视图. 减少请求数量和带宽,当然在开发调试时一般不开启.
- 解决CENTOS7虚拟机更改静态IP无法启动
在linuxman的编辑中,未出现问题.反复的查看原因未果,后查明是虚拟机所致.1.在开启网络时,有错误提示:Restarting network (via systemctl): Job for ...
- Nginx配置域名转发实例
域名:cps.45wan.com 所在阿里云主机:123.35.9.12 45wan没有在阿里云备案 67wan已经在阿里云备案 阿里云主机(假如123.35.9.12)上原来的nginx配置: ...
- 用 CALayer 定制下载进度条控件
// // RPProgressView.h // CALayer定制下载进度条控件 // // Created by RinpeChen on 16/1/2. // Copyright © 2016 ...