3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 67  Solved: 39
[Submit][Status]

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
yet another one of their crazy games with Farmer John. The cows 
will arrange themselves in a line and ask Farmer John what their 
line number is. In return, Farmer John can give them a line number 
and the cows must rearrange themselves into that line. 
A line number is assigned by numbering all the permutations of the 
line in lexicographic order.

Consider this example: 
Farmer John has 5 cows and gives them the line number of 3. 
The permutations of the line in ascending lexicographic order: 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
ask Farmer John what their line number is.

Continuing with the list: 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game. 
They have K (1 <= K <= 10,000) queries that they need help with. 
Query i has two parts: C_i will be the command, which is either 'P' 
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer 
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct 
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。 
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
例如:有5头牛 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
…… 
现在,已知N头牛的排列方式,求这种排列方式的行号。 
或者已知行号,求牛的排列方式。 
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
如果,行号是3,则排列方式为1 2 4 3 5 
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K 
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
Line 2*i will contain just one character: 'Q' if the cows are lining 
up and asking Farmer John for their line number or 'P' if Farmer 
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
integers B_ij which represent the cow line. If the line 2*i is 'P', 
then line 2*i+1 will contain a single integer A_i which is the line 
number to solve for.

第1行:N和K 
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a 
single integer, which is the line number of the cow line in line 
2*i+1.

If line 2*i of the input was 'P', then this line will contain N 
space separated integers giving the cow line of the number in line 
2*i+1. 
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

 

Source

题解:
我还是太sb。。。
裸的康托展开和逆康托展开。
没开long long 一直WA,搞了两小时。。。
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 500+100
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
ll n,m,a[],b[],fac[];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();
fac[]=;
for(ll i=;i<n;i++)fac[i]=fac[i-]*i;
char ch;
while(m--)
{
ch=' ';
while(ch!='P'&&ch!='Q')ch=getchar();
for1(i,n)a[i]=;
if(ch=='P')
{
ll x=read()-;
for1(i,n)
{
ll t=x/fac[n-i]+,j=,k;
for(k=;j<t;k++)if(!a[k])j++;
a[k-]=;b[i]=k-;
x%=fac[n-i];
}
for1(i,n-)printf("%d ",b[i]);printf("%d\n",b[n]);
}
else
{
for1(i,n)b[i]=read();
ll x=;
for1(i,n)
{
ll j=,k;
for(k=;k<b[i];k++)if(!a[k])j++;
a[k]=;
x+=j*fac[n-i];
}
printf("%lld\n",x);
}
}
return ;
}

BZOJ3301: [USACO2011 Feb] Cow Line的更多相关文章

  1. 3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 82  Solved: 49[Submit ...

  2. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  3. [BZOJ] 3301: [USACO2011 Feb] Cow Line

    康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...

  4. [USACO2011 Feb] Cow Line

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...

  5. 【BZOJ】【3301】【USACO2011 Feb】Cow Line

    康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...

  6. BZOJ2274: [Usaco2011 Feb]Generic Cow Protests

    2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solve ...

  7. 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字

    2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 97 ...

  8. BZOJ3300: [USACO2011 Feb]Best Parenthesis

    3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 42 ...

  9. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

随机推荐

  1. SKView类

    继承自 UIView:UIResponder:NSObject 符合 NSCoding(UIView)UIAppearance(UIView)UIAppearanceContainer(UIView) ...

  2. SpriteKit所有的类

    1.SKAction 2.SKCropNode 3.SKEffectNode 4.SKEmitterNode 5.SKKeyframeSequence 6.SKLabelNode 7.SKNode 8 ...

  3. Coding Your Life

    前几天看到篇文章,写的是科技让人变得陌生,balabala,总的说来就科技让邻居是男是女不知道了,朋友见面少了之类的.其实我觉得,也不能全怪科技发展的太快,而是人心都飘到网路上了,像我这一辈已经老去的 ...

  4. Java基础知识强化95:Calendar类之Calendar类的add()和set()方法

    1. Calendar的add()和set()方法: public void add(int field,int amount):根据给定的日历字段和对应的时间,来对当前的日历进行操作 public ...

  5. thinkphp3.2.3 成功对接支付宝接口

    一.首先下载支付宝官方接口,下载地址: https://b.alipay.com/order/productDetail.htm?productId=2012111200373124&tabI ...

  6. 画年利率 画图 自定义 View

    使用 SlbSyView slbView; slbView = (SlbSyView) findViewById(R.id.slbView); slbView.setHeights(new float ...

  7. 排序算法之奇偶排序 JAVA奇偶排序算法

    奇偶排序法的思路是在数组中重复两趟扫描.第一趟扫描选择所有的数据项对,a[j]和a[j+1],j是奇数(j=1, 3, 5……).如果它们的关键字的值次序颠倒,就交换它们.第二趟扫描对所有的偶数数据项 ...

  8. TextView过长显示省略号, TextView文字中间加横线

    1.TextView显示的内容过长时自动显示省略号:  省略号的位置:android:ellipsize="end"   省略号在结尾android:ellipsize=" ...

  9. Swift2.0异常处理

    // 在抛出异常之前,我们需要在函数或方法的返回箭头 -> 前使用 throws 来标明将会抛出异常 func myMethodRetrunString() throws -> Strin ...

  10. Zend Framework

    参考:http://www.php100.com/manual/ZendFramework/index.html 1.1. 概述 Zend Framework (ZF) 是一个开放源代码的 PHP5 ...