参考,https://matt33.com/2019/03/17/apache-calcite-planner/

Volcano模型使用,分为下面几个步骤,

//1. 初始化
VolcanoPlanner planner = new VolcanoPlanner();
//2.addRelTrait
planner.addRelTraitDef(ConventionTraitDef.INSTANCE);
planner.addRelTraitDef(RelDistributionTraitDef.INSTANCE);
//3.添加rule, logic to logic
planner.addRule(FilterJoinRule.FilterIntoJoinRule.FILTER_ON_JOIN);
planner.addRule(ReduceExpressionsRule.PROJECT_INSTANCE); //4.添加ConverterRule, logic to physical
planner.addRule(EnumerableRules.ENUMERABLE_MERGE_JOIN_RULE);
planner.addRule(EnumerableRules.ENUMERABLE_SORT_RULE);
//5. setRoot 方法注册相应的RelNode
planner.setRoot(relNode);
//6. find best plan
relNode = planner.findBestExp();

1和2 初始化

addRelTraitDef,就是把traitDef加到这个结构里面

  /**
* Holds the currently registered RelTraitDefs.
*/
private final List<RelTraitDef> traitDefs = new ArrayList<>();

3. 增加Rule

  public boolean addRule(RelOptRule rule) {
//加到ruleSet
final boolean added = ruleSet.add(rule);
mapRuleDescription(rule); // Each of this rule's operands is an 'entry point' for a rule call.
// Register each operand against all concrete sub-classes that could match
// it.
for (RelOptRuleOperand operand : rule.getOperands()) {
for (Class<? extends RelNode> subClass
: subClasses(operand.getMatchedClass())) {
classOperands.put(subClass, operand);
}
} // If this is a converter rule, check that it operates on one of the
// kinds of trait we are interested in, and if so, register the rule
// with the trait.
if (rule instanceof ConverterRule) {
ConverterRule converterRule = (ConverterRule) rule;
final RelTrait ruleTrait = converterRule.getInTrait();
final RelTraitDef ruleTraitDef = ruleTrait.getTraitDef();
if (traitDefs.contains(ruleTraitDef)) {
ruleTraitDef.registerConverterRule(this, converterRule);
}
}
return true;
}

a. 更新classOperands

记录Relnode和Rule的match关系,

multimap,一个relnode可以对应于多条rule的operand

  /**
* Operands that apply to a given class of {@link RelNode}.
*
* <p>Any operand can be an 'entry point' to a rule call, when a RelNode is
* registered which matches the operand. This map allows us to narrow down
* operands based on the class of the RelNode.</p>
*/
private final Multimap<Class<? extends RelNode>, RelOptRuleOperand>
classOperands = LinkedListMultimap.create();

首先取出rule的operands,

operands包含所有rule中的operand,以flatten的方式

  /**
* Flattened list of operands.
*/
public final List<RelOptRuleOperand> operands; /**
* Creates a flattened list of this operand and its descendants in prefix
* order.
*
* @param rootOperand Root operand
* @return Flattened list of operands
*/
private List<RelOptRuleOperand> flattenOperands(
RelOptRuleOperand rootOperand) {
final List<RelOptRuleOperand> operandList = new ArrayList<>(); // Flatten the operands into a list.
rootOperand.setRule(this);
rootOperand.setParent(null);
rootOperand.ordinalInParent = 0;
rootOperand.ordinalInRule = operandList.size();
operandList.add(rootOperand);
flattenRecurse(operandList, rootOperand);
return ImmutableList.copyOf(operandList);
} /**
* Adds the operand and its descendants to the list in prefix order.
*
* @param operandList Flattened list of operands
* @param parentOperand Parent of this operand
*/
private void flattenRecurse(
List<RelOptRuleOperand> operandList,
RelOptRuleOperand parentOperand) {
int k = 0;
for (RelOptRuleOperand operand : parentOperand.getChildOperands()) {
operand.setRule(this);
operand.setParent(parentOperand);
operand.ordinalInParent = k++;
operand.ordinalInRule = operandList.size();
operandList.add(operand);
flattenRecurse(operandList, operand);
}
}

subClasses(operand.getMatchedClass()

取到operand自身的class,比如join

  //classes保存plan中的RelNode的class
private final Set<Class<? extends RelNode>> classes = new HashSet<>(); public Iterable<Class<? extends RelNode>> subClasses(
final Class<? extends RelNode> clazz) {
return Util.filter(classes, clazz::isAssignableFrom);
}

所以这里的逻辑是,找出哪些Rule中operands的class和plan中的RelNode的class是可以匹配上的

把这个对应关系加到classOperands,有了这个关系,我们后面在遍历的时候,就知道有哪些rule和这个RelNode可能会match上,缩小搜索空间

b. 将conversion rule注册到RelTraitDef

5. SetRoot

  public void setRoot(RelNode rel) {
// We're registered all the rules, and therefore RelNode classes,
// we're interested in, and have not yet started calling metadata providers.
// So now is a good time to tell the metadata layer what to expect.
registerMetadataRels(); this.root = registerImpl(rel, null);
if (this.originalRoot == null) {
this.originalRoot = rel;
} // Making a node the root changes its importance.
this.ruleQueue.recompute(this.root);
ensureRootConverters();
}

核心调用是 registerImpl

  /**
* Registers a new expression <code>exp</code> and queues up rule matches.
* If <code>set</code> is not null, makes the expression part of that
* equivalence set. If an identical expression is already registered, we
* don't need to register this one and nor should we queue up rule matches.
*
* @param rel relational expression to register. Must be either a
* {@link RelSubset}, or an unregistered {@link RelNode}
* @param set set that rel belongs to, or <code>null</code>
* @return the equivalence-set
*/
private RelSubset registerImpl(
RelNode rel,
RelSet set) {
//如果已经注册过,直接合并返回
if (rel instanceof RelSubset) {
return registerSubset(set, (RelSubset) rel);
} // Ensure that its sub-expressions are registered.
// 1. 递归注册
rel = rel.onRegister(this); // 2. 记录下该RelNode是由哪个Rule Call产生的
if (ruleCallStack.isEmpty()) {
provenanceMap.put(rel, Provenance.EMPTY);
} else {
final VolcanoRuleCall ruleCall = ruleCallStack.peek();
provenanceMap.put(
rel,
new RuleProvenance(
ruleCall.rule,
ImmutableList.copyOf(ruleCall.rels),
ruleCall.id));
} // 3. 注册RelNode树的class和trait
registerClass(rel); registerCount++; //4. 注册RelNode到RelSet
final int subsetBeforeCount = set.subsets.size();
RelSubset subset = addRelToSet(rel, set); final RelNode xx = mapDigestToRel.put(key, rel); // 5. 更新importance
if (rel == this.root) {
ruleQueue.subsetImportances.put(
subset,
1.0); // root的importance固定为1
} //把inputs也加入到RelSubset里面
for (RelNode input : rel.getInputs()) {
RelSubset childSubset = (RelSubset) input;
childSubset.set.parents.add(rel); // 由于调整了RelSubset结构,重新计算importance
ruleQueue.recompute(childSubset);
} // 6. Fire rules
fireRules(rel, true); // It's a new subset.
if (set.subsets.size() > subsetBeforeCount) {
fireRules(subset, true);
} return subset;
}

5.1 rel = rel.onRegister(this)

onRegister,目的就是递归的对RelNode树上的每个节点调用registerImpl

取出RelNode的inputs,这里bottom up的,join的inputs就是left,right children

然后对于每个input,调用ensureRegistered

  public RelNode onRegister(RelOptPlanner planner) {
List<RelNode> oldInputs = getInputs();
List<RelNode> inputs = new ArrayList<>(oldInputs.size());
for (final RelNode input : oldInputs) {
RelNode e = planner.ensureRegistered(input, null);
}
inputs.add(e);
}
RelNode r = this;
if (!Util.equalShallow(oldInputs, inputs)) {
r = copy(getTraitSet(), inputs);
}
r.recomputeDigest();
return r;
}

ensureRegistered

  public RelSubset ensureRegistered(RelNode rel, RelNode equivRel) {
final RelSubset subset = getSubset(rel);
if (subset != null) {
if (equivRel != null) {
final RelSubset equivSubset = getSubset(equivRel);
if (subset.set != equivSubset.set) {
merge(equivSubset.set, subset.set);
}
}
return subset;
} else {
return register(rel, equivRel);
}
}
  public RelSubset register(
RelNode rel,
RelNode equivRel) {
final RelSet set;
if (equivRel == null) {
set = null;
} else {
set = getSet(equivRel);
} //递归调用registerImpl
final RelSubset subset = registerImpl(rel, set); return subset;
}

5.2 RuleProvenance

记录下由那个Rule Call,产生这个RelNode;RuleCall可能为null

final Map<RelNode, Provenance> provenanceMap;

  /**
* A RelNode that came via the firing of a rule.
*/
static class RuleProvenance extends Provenance {
final RelOptRule rule;
final ImmutableList<RelNode> rels;
final int callId; RuleProvenance(RelOptRule rule, ImmutableList<RelNode> rels, int callId) {
this.rule = rule;
this.rels = rels;
this.callId = callId;
}
}

5.3 registerClass

将Relnode的Class和traits注册到相应的机构中,记录planner包含何种RelNode和Traits

private final Set<Class<? extends RelNode>> classes = new HashSet<>();  
private final Set<RelTrait> traits = new HashSet<>();

  public void registerClass(RelNode node) {
final Class<? extends RelNode> clazz = node.getClass();
if (classes.add(clazz)) {
onNewClass(node);
}
for (RelTrait trait : node.getTraitSet()) {
if (traits.add(trait)) {
trait.register(this);
}
}
}

5.4 addRelToSet

RelSubset subset = addRelToSet(rel, set);

  private RelSubset addRelToSet(RelNode rel, RelSet set) {
RelSubset subset = set.add(rel);
mapRel2Subset.put(rel, subset); // While a tree of RelNodes is being registered, sometimes nodes' costs
// improve and the subset doesn't hear about it. You can end up with
// a subset with a single rel of cost 99 which thinks its best cost is
// 100. We think this happens because the back-links to parents are
// not established. So, give the subset another change to figure out
// its cost.
final RelMetadataQuery mq = rel.getCluster().getMetadataQuery();
subset.propagateCostImprovements(this, mq, rel, new HashSet<>()); return subset;
}

主要就是注册RelNode所对应的RelSubset

注意这里是IdentityHashMap,所以比较的是RelNode的reference,而不是hashcode,不同的RelNode对象,就会对应各自不同的RelSubset

因为一个RelNode对象一定在一个RelSet中,但是不同的RelSet中可能包含相同RelNode对象实例,比如都有join对象

  /**
* Map each registered expression ({@link RelNode}) to its equivalence set
* ({@link RelSubset}).
*
* <p>We use an {@link IdentityHashMap} to simplify the process of merging
* {@link RelSet} objects. Most {@link RelNode} objects are identified by
* their digest, which involves the set that their child relational
* expressions belong to. If those children belong to the same set, we have
* to be careful, otherwise it gets incestuous.</p>
*/
private final IdentityHashMap<RelNode, RelSubset> mapRel2Subset =
new IdentityHashMap<>();

propagateCostImprovements,因为RelSet发生变化,可能产生新的best cost,所以把当前的change告诉其他的节点,更新cost,看看是否产生新的best cost

final RelNode xx = mapDigestToRel.put(key, rel);

表示这个RelNode,已经完成注册,因为前面是通过这个Digest来判断是否注册过的

5.5 importance

importance用于表示RelSubset的优先级,优先级越高,越先进行优化

在RuleQueue里面,用这个结构来保存各个subset的importance

  /**
* The importance of each subset.
*/
final Map<RelSubset, Double> subsetImportances = new HashMap<>();

importance的计算方法如下,

Computes the importance of a node. Importance is defined as follows:

the root RelSubset has an importance of 1

其实很简单,

比如root cost 3,两个child的cost,2,5;而root的importance为1

那么两个child的importance就是,0.2和0.5

所以越top的节点,importance越大,cost越大的节点,importance越大

5.6 fireRules

这里的fireRules,一般都是选择DeferringRuleCall,所以不是马上执行rule的,因为那样比较低效,而是等真正需要的时候才去执行

  /**
* Fires all rules matched by a relational expression.
*
* @param rel Relational expression which has just been created (or maybe
* from the queue)
* @param deferred If true, each time a rule matches, just add an entry to
* the queue.
*/
void fireRules(
RelNode rel,
boolean deferred) {
for (RelOptRuleOperand operand : classOperands.get(rel.getClass())) {
if (operand.matches(rel)) {
final VolcanoRuleCall ruleCall;
if (deferred) {
ruleCall = new DeferringRuleCall(this, operand);
} else {
ruleCall = new VolcanoRuleCall(this, operand);
}
ruleCall.match(rel);
}
}
}

classOperands里面保存,每个RelNode所匹配到的所有的RuleOperand

classOperands只是说明当前Operands和RelNode匹配,但是当前RelNode子树是否匹配Rule,需要进一步看

可以看到这里会Recurse的match,match的逻辑很长,这里就不看了

每匹配一次,solve+1,当solve == operands.size(),说明对整个Rule完成匹配

会调用onMatch

  /**
* Applies this rule, with a given relational expression in the first slot.
*/
void match(RelNode rel) {
assert getOperand0().matches(rel) : "precondition";
final int solve = 0;
int operandOrdinal = getOperand0().solveOrder[solve];
this.rels[operandOrdinal] = rel;
matchRecurse(solve + 1);
} /**
* Recursively matches operands above a given solve order.
*
* @param solve Solve order of operand (&gt; 0 and &le; the operand count)
*/
private void matchRecurse(int solve) {
assert solve > 0;
assert solve <= rule.operands.size();
final List<RelOptRuleOperand> operands = getRule().operands;
if (solve == operands.size()) {
// We have matched all operands. Now ask the rule whether it
// matches; this gives the rule chance to apply side-conditions.
// If the side-conditions are satisfied, we have a match.
if (getRule().matches(this)) {
onMatch();
}
} else {......}}

对于DeferringRuleCall,

onMatch的逻辑,就是封装成VolcanoRuleMatch,并丢到RuleQueue里面去

并没有真正的执行Rule的onMatch,这就是Deferring

其实RuleQueue,RuleMatch, Importance 这些概念都是为了实现Deferring创造出来的,如果直接fire,机制就很简单

    /**
* Rather than invoking the rule (as the base method does), creates a
* {@link VolcanoRuleMatch} which can be invoked later.
*/
protected void onMatch() {
final VolcanoRuleMatch match =
new VolcanoRuleMatch(
volcanoPlanner,
getOperand0(),
rels,
nodeInputs);
volcanoPlanner.ruleQueue.addMatch(match);
}

6. findBestExp

  public RelNode findBestExp() {

    int cumulativeTicks = 0; //总步数,tick代表优化一次,触发一个RuleMatch
//这个for只会执行一次,因为只有Optimize phase里面加了RuleMatch,其他都是空的
//RuleQueue.addMatch中,phaseRuleSet != ALL_RULES 会过滤到其他的phase
for (VolcanoPlannerPhase phase : VolcanoPlannerPhase.values()) {
setInitialImportance(); //初始化impoartance RelOptCost targetCost = costFactory.makeHugeCost(); //目标cost,设为Huge
int tick = 0; //如果for执行一次,等同于cumulativeTicks
int firstFiniteTick = -1; //第一次找到可执行plan用的tick数
int giveUpTick = Integer.MAX_VALUE; //放弃优化的tick数 while (true) {
++tick; //开始一次优化,tick+1
++cumulativeTicks;
if (root.bestCost.isLe(targetCost)) { //如果bestcost < targetCost,说明找到可执行的计划
if (firstFiniteTick < 0) { //如果是第一次找到
firstFiniteTick = cumulativeTicks; //更新firstFiniteTick clearImportanceBoost(); //清除ImportanceBoost,RelSubset中有个field,boolean boosted,表示是否被boost
}
if (ambitious) {
// 会试图找到更优的计划
targetCost = root.bestCost.multiplyBy(0.9); //适当降低targetCost //如果impatient,需要设置giveUpTick
//giveUpTick初始MAX_VALUE,当成功找到一个计划后,才会设置成相应的值
if (impatient) {
if (firstFiniteTick < 10) { //如果第一次找到计划,步数小于10
//下一轮如果25步找不到更优计划,放弃
giveUpTick = cumulativeTicks + 25;
} else {
//如果计划比较复杂,步数放宽些
giveUpTick =
cumulativeTicks
+ Math.max(firstFiniteTick / 10, 25);
}
}
} else {
break; //非ambitious,有可用的计划就行,结束
}
} else if (cumulativeTicks > giveUpTick) { //放弃优化
// We haven't made progress recently. Take the current best.
break;
} else if (root.bestCost.isInfinite() && ((tick % 10) == 0)) {
//步数为整10,仍然没有找到可用的计划
//bestCost的初始值就是Infinite
injectImportanceBoost(); //提高某些RelSubSet的Importance,加快cost降低
} VolcanoRuleMatch match = ruleQueue.popMatch(phase); //从RuleQueue中找到importance最大的Match
if (match == null) {
break;
}
match.onMatch(); //触发match // The root may have been merged with another
// subset. Find the new root subset.
root = canonize(root);
} ruleQueue.phaseCompleted(phase);
} RelNode cheapest = root.buildCheapestPlan(this);
return cheapest;
}

injectImportanceBoost

把仅仅包含Convention.NONE的RelSubSets的Importance提升,意思就让这些RelSubsets先被优化

  /**
* Finds RelSubsets in the plan that contain only rels of
* {@link Convention#NONE} and boosts their importance by 25%.
*/
private void injectImportanceBoost() {
final Set<RelSubset> requireBoost = new HashSet<>(); SUBSET_LOOP:
for (RelSubset subset : ruleQueue.subsetImportances.keySet()) {
for (RelNode rel : subset.getRels()) {
if (rel.getConvention() != Convention.NONE) {
continue SUBSET_LOOP;
}
} requireBoost.add(subset);
} ruleQueue.boostImportance(requireBoost, 1.25);
}

Convention.NONE,都是infinite cost,所以先优化他们会更有效的降低cost

public interface Convention extends RelTrait {
/**
* Convention that for a relational expression that does not support any
* convention. It is not implementable, and has to be transformed to
* something else in order to be implemented.
*
* <p>Relational expressions generally start off in this form.</p>
*
* <p>Such expressions always have infinite cost.</p>
*/
Convention NONE = new Impl("NONE", RelNode.class);

PopMatch

找出importance最大的match,并且返回

 /**
* Removes the rule match with the highest importance, and returns it.
*
* <p>Returns {@code null} if there are no more matches.</p>
*
* <p>Note that the VolcanoPlanner may still decide to reject rule matches
* which have become invalid, say if one of their operands belongs to an
* obsolete set or has importance=0.
*
* @throws java.lang.AssertionError if this method is called with a phase
* previously marked as completed via
* {@link #phaseCompleted(VolcanoPlannerPhase)}.
*/
VolcanoRuleMatch popMatch(VolcanoPlannerPhase phase) {
PhaseMatchList phaseMatchList = matchListMap.get(phase); final List<VolcanoRuleMatch> matchList = phaseMatchList.list;
VolcanoRuleMatch match;
for (;;) {
if (matchList.isEmpty()) {
return null;
}
if (LOGGER.isTraceEnabled()) {
//...
} else {
match = null;
int bestPos = -1;
int i = -1;
//找出importance最大的match
for (VolcanoRuleMatch match2 : matchList) {
++i;
if (match == null
|| MATCH_COMPARATOR.compare(match2, match) < 0) {
bestPos = i;
match = match2;
}
}
match = matchList.remove(bestPos);
} if (skipMatch(match)) {
LOGGER.debug("Skip match: {}", match);
} else {
break;
}
} // A rule match's digest is composed of the operand RelNodes' digests,
// which may have changed if sets have merged since the rule match was
// enqueued.
match.recomputeDigest();
phaseMatchList.matchMap.remove(
planner.getSubset(match.rels[0]), match); return match;
}

onMatch

   /**
* Called when all operands have matched.
*/
protected void onMatch() {
volcanoPlanner.ruleCallStack.push(this);
try {
getRule().onMatch(this);
} finally {
volcanoPlanner.ruleCallStack.pop();
}
}

ruleCallStack记录当前在执行的RuleCall

最终调用到具体Rule的onMatch函数,做具体的转换

buildCheapestPlan

  /**
* Recursively builds a tree consisting of the cheapest plan at each node.
*/
RelNode buildCheapestPlan(VolcanoPlanner planner) {
CheapestPlanReplacer replacer = new CheapestPlanReplacer(planner);
final RelNode cheapest = replacer.visit(this, -1, null); return cheapest;
}

可以看到逻辑其实比较简单,就是遍历RelSubSet树,然后从上到下都选best的RelNode形成新的树

  /**
* Visitor which walks over a tree of {@link RelSet}s, replacing each node
* with the cheapest implementation of the expression.
*/
static class CheapestPlanReplacer {
VolcanoPlanner planner; CheapestPlanReplacer(VolcanoPlanner planner) {
super();
this.planner = planner;
} public RelNode visit(
RelNode p,
int ordinal,
RelNode parent) {
if (p instanceof RelSubset) {
RelSubset subset = (RelSubset) p;
RelNode cheapest = subset.best; //取出SubSet中的best
p = cheapest; //替换
} List<RelNode> oldInputs = p.getInputs();
List<RelNode> inputs = new ArrayList<>();
for (int i = 0; i < oldInputs.size(); i++) {
RelNode oldInput = oldInputs.get(i);
RelNode input = visit(oldInput, i, p); //递归执行visit
inputs.add(input); //新的input
}
if (!inputs.equals(oldInputs)) {
final RelNode pOld = p;
p = p.copy(p.getTraitSet(), inputs); //生成新的p
planner.provenanceMap.put(
p, new VolcanoPlanner.DirectProvenance(pOld));
}
return p;
}
}
}

BestCost是如何变化的?

每个RelSubSet都会记录,

bestCost和bestPlan

  /**
* cost of best known plan (it may have improved since)
*/
RelOptCost bestCost; /**
* The set this subset belongs to.
*/
final RelSet set; /**
* best known plan
*/
RelNode best;

初始化

首先RelSubSet初始化的时候,会执行computeBestCost

  private void computeBestCost(RelOptPlanner planner) {
bestCost = planner.getCostFactory().makeInfiniteCost(); //bestCost初始化成,Double.POSITIVE_INFINITY
final RelMetadataQuery mq = getCluster().getMetadataQuery();
for (RelNode rel : getRels()) {
final RelOptCost cost = planner.getCost(rel, mq);
if (cost.isLt(bestCost)) {
bestCost = cost;
best = rel;
}
}
}

getCost

  public RelOptCost getCost(RelNode rel, RelMetadataQuery mq) {
if (rel instanceof RelSubset) {
return ((RelSubset) rel).bestCost; //如果是RelSubSet直接返回结果,因为动态规划,重用之前的结果,不用反复算
}
if (noneConventionHasInfiniteCost //Convention.NONE的cost为InfiniteCost,返回
&& rel.getTraitSet().getTrait(ConventionTraitDef.INSTANCE) == Convention.NONE) {
return costFactory.makeInfiniteCost();
}
RelOptCost cost = mq.getNonCumulativeCost(rel); //算cost
if (!zeroCost.isLt(cost)) {
// cost must be positive, so nudge it
cost = costFactory.makeTinyCost(); //如果算出负的cost,用TinyCost替代,1.0
}
for (RelNode input : rel.getInputs()) {
cost = cost.plus(getCost(input, mq)); //递归把整个数的cost都加到root
}
return cost;
}

getNonCumulativeCost

    /**
* Estimates the cost of executing a relational expression, not counting the
* cost of its inputs. (However, the non-cumulative cost is still usually
* dependent on the row counts of the inputs.) The default implementation
* for this query asks the rel itself via {@link RelNode#computeSelfCost},
* but metadata providers can override this with their own cost models.
*
* @return estimated cost, or null if no reliable estimate can be
* determined
*/
RelOptCost getNonCumulativeCost(); /** Handler API. */
interface Handler extends MetadataHandler<NonCumulativeCost> {
RelOptCost getNonCumulativeCost(RelNode r, RelMetadataQuery mq);
}

getNonCumulativeCost最终调用的是RelNode#computeSelfCost

这是个抽象接口,每个RelNode的实现不同,看下比较简单的Filter的实现,

  @Override public RelOptCost computeSelfCost(RelOptPlanner planner,
RelMetadataQuery mq) {
double dRows = mq.getRowCount(this);
double dCpu = mq.getRowCount(getInput());
double dIo = 0;
return planner.getCostFactory().makeCost(dRows, dCpu, dIo);
}

这里的实现就是单纯用rowCount来表示cost

makeCost也是直接封装成VolcanoCost对象

节点变更

各个地方当产生新的RelNode时,会调用Register,ensureRegistered,或registerImpl进行注册

   public RelSubset register(
RelNode rel,
RelNode equivRel) {
final RelSet set;
if (equivRel == null) {
set = null;
} else {
set = getSet(equivRel);
}
final RelSubset subset = registerImpl(rel, set); return subset;
}
  public RelSubset ensureRegistered(RelNode rel, RelNode equivRel) {
final RelSubset subset = getSubset(rel);
if (subset != null) {
if (equivRel != null) {
final RelSubset equivSubset = getSubset(equivRel);
if (subset.set != equivSubset.set) {
merge(equivSubset.set, subset.set);
}
}
return subset;
} else {
return register(rel, equivRel);
}
}

registerImpl调用addRelToSet,registerImpl的实现前面有

  private RelSubset addRelToSet(RelNode rel, RelSet set) {
RelSubset subset = set.add(rel);
mapRel2Subset.put(rel, subset); // While a tree of RelNodes is being registered, sometimes nodes' costs
// improve and the subset doesn't hear about it. You can end up with
// a subset with a single rel of cost 99 which thinks its best cost is
// 100. We think this happens because the back-links to parents are
// not established. So, give the subset another change to figure out
// its cost.
final RelMetadataQuery mq = rel.getCluster().getMetadataQuery();
subset.propagateCostImprovements(this, mq, rel, new HashSet<>()); return subset;
}

propagateCostImprovements

  /**
* Checks whether a relexp has made its subset cheaper, and if it so,
* recursively checks whether that subset's parents have gotten cheaper.
*
* @param planner Planner
* @param mq Metadata query
* @param rel Relational expression whose cost has improved
* @param activeSet Set of active subsets, for cycle detection
*/
void propagateCostImprovements(VolcanoPlanner planner, RelMetadataQuery mq,
RelNode rel, Set<RelSubset> activeSet) {
for (RelSubset subset : set.subsets) {
if (rel.getTraitSet().satisfies(subset.traitSet)) {
subset.propagateCostImprovements0(planner, mq, rel, activeSet);
}
}
}
  void propagateCostImprovements0(VolcanoPlanner planner, RelMetadataQuery mq,
RelNode rel, Set<RelSubset> activeSet) {
++timestamp; if (!activeSet.add(this)) { //检测到环
// This subset is already in the chain being propagated to. This
// means that the graph is cyclic, and therefore the cost of this
// relational expression - not this subset - must be infinite.
LOGGER.trace("cyclic: {}", this);
return;
}
try {
final RelOptCost cost = planner.getCost(rel, mq); //获取cost
if (cost.isLt(bestCost)) {
bestCost = cost;
best = rel; // Lower cost means lower importance. Other nodes will change
// too, but we'll get to them later.
planner.ruleQueue.recompute(this); //cost变了,所以importance要重新算
//递归的执行propagateCostImprovements
for (RelNode parent : getParents()) {
final RelSubset parentSubset = planner.getSubset(parent);
parentSubset.propagateCostImprovements(planner, mq, parent,
activeSet);
}
planner.checkForSatisfiedConverters(set, rel);
}
} finally {
activeSet.remove(this);
}
}

fxjwind Calcite分析 - Volcano模型的更多相关文章

  1. 分析业务模型-类图(Class Diagram)

    分析业务模型-类图(Class Diagram)     分析业务模型-类图(Class Diagram)(上) 摘要:类图(Class Diagram)可能是用得最多的一种UML图.类图的基本语法并 ...

  2. FocusBI:地产分析&雪花模型

    微信公众号:FocusBI关注可了解更多的商业智能.数据仓库.数据库开发.爬虫知识及沪深股市数据推送.问题或建议,请关注公众号发送消息留言;如果你觉得FocusBI对你有帮助,欢迎转发朋友圈或在文章末 ...

  3. 前端MVC框架Backbone 1.1.0源码分析(二) - 模型

    模型是什么? Models are the heart of any JavaScript application, containing the interactive data as well a ...

  4. Netty源码分析--内存模型(上)(十一)

    前两节我们分别看了FastThreadLocal和ThreadLocal的源码分析,并且在第八节的时候讲到了处理一个客户端的接入请求,一个客户端是接入进来的,是怎么注册到多路复用器上的.那么这一节我们 ...

  5. Netty源码分析--内存模型(下)(十二)

    这一节我们一起看下分配过程 PooledByteBuf<T> allocate(PoolThreadCache cache, int reqCapacity, int maxCapacit ...

  6. Calcite分析 - Rule

    Calcite源码分析,参考: http://matt33.com/2019/03/07/apache-calcite-process-flow/ https://matt33.com/2019/03 ...

  7. HotSpot源码分析之类模型

    HotSpot采用了OOP-Klass模型描述Java的类和对象.Klass模型采用Klass类及相关子类的对象来描述具体的Java类.一般HotSpot JVM 在加载Java的Class 文件时, ...

  8. 《火球——UML大战需求分析》(第3章 分析业务模型-类图)——3.8 小结与练习

    摘要:类图(Class Diagram)可能是用得最多的一种UML图.类图的基本语法并不复杂,你可能最多学习两三天就可以掌握,然而要真正做到活用类图则可能需要几年的功力.类图是锻炼面向对象分析(OOA ...

  9. Netty源码分析--Reactor模型(二)

    这一节和我一起开始正式的去研究Netty源码.在研究之前,我想先介绍一下Reactor模型. 我先分享两篇文献,大家可以自行下载学习.  链接:https://pan.baidu.com/s/1Uty ...

随机推荐

  1. iOS学习——NSLog输出各种类型

    在开发过程中,在调试过程中经常打印不出自己想要的数据格式,还时常报警告,所以整理了一下iOS中用NSLog打印各种数据类型的样式.整型占位符说明 : %d : 十进制整数, 正数无符号, 负数有 “- ...

  2. Linux应用与端口

    lsof -i:port --- 得到对应端口的应用pid PS -ef|grep pid --- 根据pid得到对应应用

  3. Google 浏览器保存mht网页文件(单个网页)的方法(无需插件)

    1.找到设置打开单个网页保存的地方 在google浏览器地址栏输入:chrome://flags”,回车 2.实现保存单个网页 打开你要保存的网页后,只需 Ctrl+s ,搞定!如下: 假设找到了一篇 ...

  4. PHP实现智能语音播报

    原文地址 https://www.jianshu.com/p/91a046ec6ebc 大家估计都知道现在很多AI音响能够给你播报天气,叫你起床...甚至能够接受语音指令!所谓的人工智能音响,听起来很 ...

  5. 【书评:Oracle查询优化改写】第14章 结尾章

    [书评:Oracle查询优化改写]第14章 结尾章 一.1  相关参考文章链接 前13章的链接参考相关连接: [书评:Oracle查询优化改写]第一章 http://blog.itpub.net/26 ...

  6. synchronized的使用方法和作用域

    文章地址:https://mp.weixin.qq.com/s?__biz=MzI4NTEzMjc5Mw==&mid=2650554746&idx=1&sn=8e45e741c ...

  7. MySQL/MariaDB数据库的复制加密

      MySQL/MariaDB数据库的复制加密 作者:尹正杰  版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MySQL的安全问题 1>.基于SSL复制 在默认的主从复制过程或远程连接 ...

  8. 查看Linux 系统的配置,内核版本和增减用户/增减组/增减权限

    今天购买了一款腾讯云服务器,一年120RMB 配置也很一般 1核的CPU 2GB内存 1Mbps 带宽 普通云硬盘  50G 操作系统: CentOS 7.2.64 现在来验收一下 17 2019-0 ...

  9. 排序接口与抽象类(java)

    定义一个ISort接口,方法有升序(sortAsc),有降序(sortDesc),传入参数是一个实现Comparable接口的对象数组,即不仅仅只对数字排序,还定义了两个默认方法: compare方法 ...

  10. ELK日志分析系统搭建 windows

    1 分别下载elk包 下载地址 https://www.elastic.co/cn/downloads 2 将这三个解压到同一个目录下,便于管理 3 elasticsearch不需要修改配置 默认即可 ...