POJ-图论-最小生成树模板

Kruskal算法

1.初始时所有结点属于孤立的集合。

2.按照边权递增顺序遍历所有的边,若遍历到的边两个顶点仍分属不同的集合(该边即为连通这两个集合的边中权值最小的那条)则确定该边为最小生成树上的一条边,并将这两个顶点分属的集合合并。

3.遍历完所有边后,原图上所有结点属于同一个集合则被选取的边和原图中所有结点构成最小生成树;否则原图不连通,最小生成树不存在。

数据结构:引入边结构,并重载小于号运算符

struct Edge
{
int a, b;//边的两端结点编号
int cost;//边的权值
bool operator <(const Edge &A)const
{
return cost < A.cost;//边权从小到大排列
}
}edge[];

用并查集来实现集合操作

void init()
{
for (int i = ; i <= n; i++)p[i] = i;
ans = ;
} int find(int x)
{
return (x == p[x]) ? x : p[x] = find(p[x]);
} void Union(int i)//以边为单位合并
{
int a = find(edge[i].a);
int b = find(edge[i].b);//查找边的两个顶点所在集合的信息
if (a != b) //若他们属于不同集合,则选用该边
{
p[b] = a;//合并集合
ans += edge[i].cost;//累加权值
}
}

例 5.3 还是畅通工程

#include<cstdio>
#include<algorithm>
using namespace std;
const int N = ; int p[N];//父结点数组
int n;//结点数量
int ans;//最小权值和 struct Edge
{
int a, b;//边的两端结点编号
int cost;//边的权值
}edge[]; bool cmp(Edge a, Edge b)
{
return a.cost<b.cost;
} void init()
{
for (int i = ; i <= n; i++)p[i] = i;
ans = ;
} int find(int x)
{
return (x == p[x]) ? x : p[x] = find(p[x]);
} void Union(int i)//以边为单位合并
{
int a = find(edge[i].a);
int b = find(edge[i].b);//查找边的两个顶点所在集合的信息
if (a != b) //若他们属于不同集合,则选用该边
{
p[b] = a;//合并集合
ans += edge[i].cost;//累加权值
}
} int main()
{
while (scanf("%d", &n) != EOF && n != )
{
for (int i = ; i <= n * (n - ) / ; i++) scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].cost);
sort(edge + , edge + + n * (n - ) / , cmp);//起始元素为edge[1],一共n * (n - 1) / 2个待排序元素
init();
for (int i = ; i <= n * (n - ) / ; i++) Union(i);
printf("%d\n", ans);
}
return ;
}
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = ; int p[N];//父结点数组
int n;//结点数量
int ans;//最小权值和 struct Edge
{
int a, b;//边的两端结点编号
int cost;//边的权值
bool operator <(const Edge &A)const
{
return cost < A.cost;//边权从小到大排列
}
}edge[]; void init()
{
for (int i = ; i <= n; i++)p[i] = i;
ans = ;
} int find(int x)
{
return (x == p[x]) ? x : p[x] = find(p[x]);
} void Union(int i)//以边为单位合并
{
int a = find(edge[i].a);
int b = find(edge[i].b);//查找边的两个顶点所在集合的信息
if (a != b) //若他们属于不同集合,则选用该边
{
p[b] = a;//合并集合
ans += edge[i].cost;//累加权值
}
} int main()
{
while (scanf("%d", &n) != EOF && n != )
{
for (int i = ; i <= n * (n - ) / ; i++) scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].cost);
sort(edge + , edge + + n * (n - ) / );//起始元素为edge[1],一共n * (n - 1) / 2个待排序元素
init();
for (int i = ; i <= n * (n - ) / ; i++) Union(i);
printf("%d\n", ans);
}
return ;
}

重载Edge小于号

POJ-图论-最小生成树模板的更多相关文章

  1. poj 1258 最小生成树 模板

    POJ 最小生成树模板 Kruskal算法 #include<iostream> #include<algorithm> #include<stdio.h> #in ...

  2. Poj 2187 凸包模板求解

    Poj 2187 凸包模板求解 传送门 由于整个点数是50000,而求凸包后的点也不会很多,因此直接套凸包之后两重循环即可求解 #include <queue> #include < ...

  3. 图论-最小生成树<Kruskal>

    昨天: 图论-最小生成树<Dijkstra,Floyd> 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 然而,文中提 ...

  4. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  5. 最小生成树模板题POJ - 1287-prim+kruskal

    POJ - 1287超级模板题 大概意思就是点的编号从1到N,会给你m条边,可能两个点之间有多条边这种情况,求最小生成树总长度? 这题就不解释了,总结就算,prim是类似dijkstra,从第一个点出 ...

  6. poj 1251 poj 1258 hdu 1863 poj 1287 poj 2421 hdu 1233 最小生成树模板题

    poj 1251  && hdu 1301 Sample Input 9 //n 结点数A 2 B 12 I 25B 3 C 10 H 40 I 8C 2 D 18 G 55D 1 E ...

  7. POJ 1789 Truck History (Kruskal最小生成树) 模板题

    Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for v ...

  8. POJ 1258:Agri-Net Prim最小生成树模板题

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45050   Accepted: 18479 Descri ...

  9. POJ 1287 Networking (最小生成树模板题)

    Description You are assigned to design network connections between certain points in a wide area. Yo ...

随机推荐

  1. C#字符串(String)类型中@的用法

    C# string 字符串的前面可以加 @(称作"逐字字符串")将转义字符(\)当作普通字符对待,比如: string str = @"C:\Windows"; ...

  2. python plotly 画饼状图

    代码 import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go ...

  3. python机器学习简介

    目录 一:学习机器学习原因和能够解决的问题 二:为什么选择python作为机器学习的语言 三:机器学习常用库简介 四:机器学习流程   机器学习是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析 ...

  4. sqlserver 远程链接

    远程链接的文档就不说了,网上好多. 这里就说下我遇到的情况,如果是阿里云的服务器的话,他的端口配置都是要到阿里云里的安全组里去配置的,第一次一直没想到,搞了一天才发现,在这里提醒各位好友.

  5. 设计模式之(十四)责任链模式(Chain of Responsibility)

    在业务场景中,有很多是需要审批的.审核方式还可能常常发生变化,而责任链模式就是为了解决这种场景的情况的. 责任链模式定义:十多个对象都有机会处理请求,从而避免发送者和接受者之间的耦合关系.讲这些对象连 ...

  6. 为啥git会这么差!!!!

    删除分支  git push origin --delete Chapater6   可以删除远程分支Chapater6 git branch -d Chapater8 可以删除本地分支(在主分支中) ...

  7. html书写行内元素时-tab和换行会在行内元素间引入间距

    目录 html文本中的控制字符会被解析为文本节点 书写行内元素时,换行符LF与水平制表符HT会引入莫名的元素间间隔 其他控制字符是否会引入间距的验证 html文本中的控制字符会被解析为文本节点 举例: ...

  8. AI:WEB:1 Walkthrough

    AI: Web: 1 Vulnhub Walkthrough靶机下载:https://www.vulnhub.com/entry/ai-web-1,353/测试方法:    Nmap网络扫描    浏 ...

  9. jvm运行时数据区之程序计数器

    什么是程序计数器? 程序计数器是一块 较小 的内存空间,它可以看做是当前线程所执行的字节码的 行号指示器 :在虚拟机的概念模型里(仅仅是概念模型,各种虚拟机可能会通过一些更高效的方式去实现),字节码解 ...

  10. CPU和Memory压力测试方法

    一:用原生Centos自带的工具 1. CPU 下面命令会创建 CPU 负荷,方法是通过压缩随机数据并将结果发送到 /dev/null: cat /dev/urandom | gzip -9 > ...