Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

For example,
If nums = [1,2,2], a solution is:

[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]

78. Subsets 的拓展,这题数组里面可能含有重复元素。

Python:

class Solution(object):
def subsetsWithDup(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
nums.sort()
result = [[]]
previous_size = 0
for i in xrange(len(nums)):
size = len(result)
for j in xrange(size):
# Only union non-duplicate element or new union set.
if i == 0 or nums[i] != nums[i - 1] or j >= previous_size:
result.append(list(result[j]))
result[-1].append(nums[i])
previous_size = size
return result

Python:

class Solution2(object):
def subsetsWithDup(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = []
i, count = 0, 1 << len(nums)
nums.sort() while i < count:
cur = []
for j in xrange(len(nums)):
if i & 1 << j:
cur.append(nums[j])
if cur not in result:
result.append(cur)
i += 1 return result

Python:  

class Solution3(object):
def subsetsWithDup(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = []
self.subsetsWithDupRecu(result, [], sorted(nums))
return result def subsetsWithDupRecu(self, result, cur, nums):
if not nums:
if cur not in result:
result.append(cur)
else:
self.subsetsWithDupRecu(result, cur, nums[1:])
self.subsetsWithDupRecu(result, cur + [nums[0]], nums[1:])  

C++:

class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int> &nums) {
vector<vector<int>> result(1);
sort(nums.begin(), nums.end());
size_t previous_size = 0;
for (size_t i = 0; i < nums.size(); ++i) {
const size_t size = result.size();
for (size_t j = 0; j < size; ++j) {
// Only union non-duplicate element or new union set.
if (i == 0 || nums[i] != nums[i - 1] || j >= previous_size) {
result.emplace_back(result[j]);
result.back().emplace_back(nums[i]);
}
}
previous_size = size;
}
return result;
}
};

  

类似题目:

[LeetCode] 78. Subsets 子集合

All LeetCode Questions List 题目汇总

[LeetCode] 90. Subsets II 子集合 II的更多相关文章

  1. LeetCode 78. Subsets(子集合)

    Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...

  2. LeetCode 90. Subsets II (子集合之二)

    Given a collection of integers that might contain duplicates, nums, return all possible subsets. Not ...

  3. [LeetCode] 90.Subsets II tag: backtracking

    Given a collection of integers that might contain duplicates, nums, return all possible subsets (the ...

  4. [leetcode]90. Subsets II数组子集(有重)

    Given a collection of integers that might contain duplicates, nums, return all possible subsets (the ...

  5. [LeetCode] 916. Word Subsets 单词子集合

    We are given two arrays A and B of words.  Each word is a string of lowercase letters. Now, say that ...

  6. [LeetCode] 90. Subsets II 子集合之二

    Given a collection of integers that might contain duplicates, S, return all possible subsets. Note: ...

  7. Leetcode#90 Subsets II

    原题地址 跟Subsets(参见这篇文章)类似. 但因为有重复元素,所以要考虑去重问题. 什么情况下会出现重复呢?比如S = {5, 5, 5},如果要选1个5,一共有C(3,1)=3种选法,即100 ...

  8. leetCode 90.Subsets II(子集II) 解题思路和方法

    Given a collection of integers that might contain duplicates, nums, return all possible subsets. Not ...

  9. leetcode 90. subsets

    解题思路: 要生成子集,对于vector 中的每个数,对于每个子集有两种情况,加入或不加入. 因此代码: class Solution { public: void subsetG(vector< ...

随机推荐

  1. Linux CentOS7.x安装docker全过程

    1.在安装docker之前,首先使用yum -y remove docker命令移除系统中已有的旧版本的docker yum -y remove docker 这里显示该系统没有安装过docker: ...

  2. MSc in Robotics

    MSc in RoboticsProgramming Methods for Robotics AssignmentIrene Moulitsas & Peter SherarCranfiel ...

  3. VMware共享本地文件

    最后可以在这里找到

  4. Python 3的 bytes 数据类型

    """b'\xe6\x88\x91\xe7\x88\xb1Python\xe7\xbc\x96\xe7\xa8\x8b'代表这是一个字节窜,\x代表十六进制表示 e6是十 ...

  5. LeetCode 875. Koko Eating Bananas

    原题链接在这里:https://leetcode.com/problems/koko-eating-bananas/ 题目: Koko loves to eat bananas.  There are ...

  6. js 键盘事件(onkeydown、onkeyup、onkeypress)

    onkeypress 这个事件在用户按下并放开任何字母数字键时发生.系统按钮(例如,箭头键和功能键)无法得到识别. onkeyup 这个事件在用户放开任何先前按下的键盘键时发生. onkeydown ...

  7. 洛谷 P1012 拼数

    P1012 拼数 标签 字符串 排序 NOIp提高组 1998 云端 难度 普及- 时空限制 1s / 128MB 题目描述 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 例 ...

  8. Calibre中使用DeDRM插件进行Kindle电子书解锁

    小书匠 废话不多说,下面是Calibre和DeDRM插件的下载地址: https://calibre-ebook.com/download https://github.com/apprenticeh ...

  9. SQL基础-操纵表及插入、查询

    一.操纵表 1.表的关键信息 2.更新表名 更新表名:使用RENAME TABLE关键字.语法如下: RENAME TABLE 旧表名 TO 新表名; 比如,生产环境投产前备份teacher表,使用如 ...

  10. 【UVA11134】传说中的车

    横纵坐标互不影响,所以问题转化到一维:在n个区间中每个区间选一个数,n个数都被选一次 将区间按右端点排序,枚举区间,每个区间选最靠左的没被选过的点 #include<algorithm> ...