一、opencv的示例模型文件

 
使用Torch模型【OpenCV对各种模型兼容并包,起到胶水作用】,
下载地址:
fast_neural_style_eccv16_starry_night.t7
fast_neural_style_instance_norm_feathers.t7
http://cs.stanford.edu/people/jcjohns/fast-neural-style/models/instance_norm/feathers.t7

二、示例代码
 
代码流程均较简单:图像转Blob,forward,处理输出结果,显示。【可以说是OpenCV Dnn使用方面的经典入门,对于我们对流程配置、参数理解都有很好帮助】
 
c++代码如下:
 
// This script is used to run style transfer models from '
// https://github.com/jcjohnson/fast-neural-style using OpenCV
 
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
 
using namespace cv;
using namespace cv::dnn;
using namespace std;
 
 
int main(int argc, char **argv)
{
    string modelBin = "../../data/testdata/dnn/fast_neural_style_instance_norm_feathers.t7";
    string imageFile = "../../data/image/chicago.jpg";
 
    float scale = 1.0;
    cv::Scalar mean { 103.939, 116.779, 123.68 };
    bool swapRB = false;
    bool crop = false;
    bool useOpenCL = false;
 
    Mat img = imread(imageFile);
    if (img.empty()) {
        cout << "Can't read image from file: " << imageFile << endl;
        return 2;
    }
 
    // Load model
    Net net = dnn::readNetFromTorch(modelBin);
    if (useOpenCL)
        net.setPreferableTarget(DNN_TARGET_OPENCL);
 
    // Create a 4D blob from a frame.
    Mat inputBlob = blobFromImage(img,scale, img.size(),mean,swapRB,crop);
 
    // forward netword
    net.setInput(inputBlob);
    Mat output = net.forward();
 
    // process output
    Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 0)) += 103.939;
    Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 1)) += 116.779;
    Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 2)) += 123.68;
 
    std::vector<cv::Mat> ress;
    imagesFromBlob(output, ress);
 
    // show res
    Mat res;
    ress[0].convertTo(res, CV_8UC3);
    imshow("reslut", res);
 
    imshow("origin", img);
 
    waitKey();
    return 0;
}

 
三、演示
fast_neural_style_instance_norm_feathers.t7的演示效果

fast_neural_style_eccv16_starry_night.t7的演示效果:
 

我认为对简笔画的效果不是太好
通过重新作用于原始图片,我认识到这个模型采用的很可能是局部图片

那么这些模型如何训练出来?这里也给出了很多帮助:

Training new models

To train new style transfer models, first use the scriptscripts/make_style_dataset.py to create an HDF5 file from folders of images.You will then use the script train.lua to actually train models.

Step 1: Prepare a dataset

You first need to install the header files for Python 2.7 and HDF5. On Ubuntuyou should be able to do the following:

sudo apt-get -y install python2.7-dev
sudo apt-get install libhdf5-dev

You can then install Python dependencies into a virtual environment:

virtualenv .env                  # Create the virtual environmentsource .env/bin/activate         # Activate the virtual environment
 
pip install -r requirements.txt 

# Install Python dependencies# Work for a while ...

 
deactivate                      

# Exit the virtual environment

With the virtual environment activated, you can use the scriptscripts/make_style_dataset.py to create an HDF5 file from a directory oftraining images and a directory of validation images:

python scripts/make_style_dataset.py \
  --train_dir path/to/training/images \
  --val_dir path/to/validation/images \
  --output_file path/to/output/file.h5

All models in thisrepository were trained using the images from theCOCO dataset.

The preprocessing script has the following flags:

  • --train_dir: Path to a directory of training images.
  • --val_dir: Path to a directory of validation images.
  • --output_file: HDF5 file where output will be written.
  • --height, --width: All images will be resized to this size.
  • --max_images: The maximum number of images to use for trainingand validation; -1 means use all images in the directories.
  • --num_workers: The number of threads to use.

Step 2: Train a model

After creating an HDF5 dataset file, you can use the script train.lua totrain feedforward style transfer models. First you need to download aTorch version of theVGG-16 modelby running the script

bash models/download_vgg16.sh

This will download the file vgg16.t7 (528 MB) to the models directory.

You will also need to installdeepmind/torch-hdf5which gives HDF5 bindings for Torch:

luarocks install https://raw.githubusercontent.com/deepmind/torch-hdf5/master/hdf5-0-0.rockspec

You can then train a model with the script train.lua. For basic usage thecommand will look something like this:

th train.lua \
  -h5_file path/to/dataset.h5 \
  -style_image path/to/style/image.jpg \
  -style_image_size 384 \
  -content_weights 1.0 \
  -style_weights 5.0 \
  -checkpoint_name checkpoint \
  -gpu 0

The full set of options for this script are described here.


OpenCv dnn模块扩展研究(1)--style transfer的更多相关文章

  1. 如何使用 Opencv dnn 模块调用 Caffe 预训练模型?

    QString modelPrototxt = "D:\\Qt\\qmake\\CaffeModelTest\\caffe\\lenet.prototxt"; QString mo ...

  2. 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

    @ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...

  3. OpenCV自带dnn的Example研究(4)— openpose

    这个博客系列,简单来说,今天我们就是要研究 https://docs.opencv.org/master/examples.html下的 6个文件,看看在最新的OpenCV中,它们是如何发挥作用的. ...

  4. OpenCV自带dnn的Example研究(3)— object_detection

    这个博客系列,简单来说,今天我们就是要研究 https://docs.opencv.org/master/examples.html下的 6个文件,看看在最新的OpenCV中,它们是如何发挥作用的. ...

  5. [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer

    第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...

  6. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  7. (E2E_L2)GOMfcTemplate在vs2017上的运行并融合Dnn模块

    GOMfcTemplate一直运行在VS2012上运行的,并且开发出来了多个产品.在技术不断发展的过程中,出现了一些新的矛盾:1.由于需要使用DNN模块,而这个模块到了4.0以上的OpenCV才支持的 ...

  8. 神经风格转换Neural Style Transfer a review

    原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...

  9. 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer

    Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...

随机推荐

  1. 大数据技术之Hadoop3.1.2版本HA模式

    大数据技术之Hadoop3.1.2版本HA模式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Hadoop的HA特点 1>.主备NameNode 2>.解决单点故障 ...

  2. DTD学习

    DTD 简介 文档类型定义(DTD)可定义合法的XML文档构建模块.它使用一系列合法的元素来定义文档的结构.DTD 可被成行地声明于 XML 文档中,也可作为一个外部引用. XML文件内部引用: 外部 ...

  3. ccze - A robust log colorizer(强大的日志着色器)

    这些程序遵循通常的GNU命令行语法,长选项以两个破折号(` - ')开头.选项摘要如下. -a, - argument PLUGIN = ARGUMENTS              使用此选项将AR ...

  4. python模块统计

    .处理日期和时间 datetime/time/pytz/dateutil/calendar 注:calendar有很广泛的方法用来处理年历和月历,例如打印某月的月历 .处理字符串 re .处理字符集编 ...

  5. Can you answer these queries? (线段树

    题目 题意: 初始给你n个数,通过m个操作,  操作0是使区间范围内的每一个a[i]都变成 根号a[i] ,操作1是查询区间范围内数字的和. 思路: 如果一个节点sum[rt]是1的话,根号1还是1, ...

  6. Spring-02 -Spring 创建对象的三种方式 :1.通过构造方法创建/2.实例工厂/3.静态工厂

    通过构造方法创建  1.1 无参构造创建:默认情况. 1.2 有参构造创建:需要明确配置 1.2.1 需要在类中提供有参构造方法 1.2.2 在 applicationContext.xml 中设置调 ...

  7. csr_matrix

    from scipy.sparse import * row = [0,0,0,1,1,1,2,2,2]#行指标col = [0,1,2,0,1,2,0,1,2]#列指标data = [1,0,1,0 ...

  8. Python 冒泡排序只适用位数相同,位数不同用a.sort()方法

    数组内容双位数排序: #coding:utf-8 print u"中文" a = ['] b = 0 c = 0 print a i =0 for j in range (len( ...

  9. Ecshop漏洞通杀0day【最新入侵手法】

    昨晚上翻阅一本技术书籍中,找到灵感,发现的ECshop漏洞. 搜索关键字:关键字:powered by ecshop 方法一: 普通代码: user.php?act=order_query&o ...

  10. [Wc2011] Xor 和 [HNOI2011]XOR和路径

    Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Prob ...