在Tensorflow下使用SSD模型训练自己的数据集时,经过查找很多博客资料,已经成功训练出来了自己的模型,但就是在测试自己模型效果的时候,出现了如下错误。

2019-10-27 14:47:12.862573: W tensorflow/core/framework/op_kernel.cc:1401] OP_REQUIRES failed at save_restore_v2_ops.cc:184 : Not found: Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint
Traceback (most recent call last):
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1334, in _do_call
return fn(*args)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1319, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1407, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.NotFoundError: Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint
[[{{node save/RestoreV2}}]]
[[{{node save/RestoreV2}}]] During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1276, in restore
{self.saver_def.filename_tensor_name: save_path})
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1152, in _run
feed_dict_tensor, options, run_metadata)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1328, in _do_run
run_metadata)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1348, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.NotFoundError: Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]]
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]] Caused by op 'save/RestoreV2', defined at:
File "ssd_notebook.py", line 53, in <module>
saver = tf.train.Saver()
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 832, in __init__
self.build()
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 844, in build
self._build(self._filename, build_save=True, build_restore=True)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 881, in _build
build_save=build_save, build_restore=build_restore)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 513, in _build_internal
restore_sequentially, reshape)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 332, in _AddRestoreOps
restore_sequentially)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 580, in bulk_restore
return io_ops.restore_v2(filename_tensor, names, slices, dtypes)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/ops/gen_io_ops.py", line 1572, in restore_v2
name=name)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3300, in create_op
op_def=op_def)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1801, in __init__
self._traceback = tf_stack.extract_stack() NotFoundError (see above for traceback): Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]]
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]] During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1286, in restore
names_to_keys = object_graph_key_mapping(save_path)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1591, in object_graph_key_mapping
checkpointable.OBJECT_GRAPH_PROTO_KEY)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 370, in get_tensor
status)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 528, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.NotFoundError: Key _CHECKPOINTABLE_OBJECT_GRAPH not found in checkpoint During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "ssd_notebook.py", line 54, in <module>
saver.restore(isess, ckpt_filename)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 1292, in restore
err, "a Variable name or other graph key that is missing")
tensorflow.python.framework.errors_impl.NotFoundError: Restoring from checkpoint failed. This is most likely due to a Variable nameor other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error: Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]]
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]] Caused by op 'save/RestoreV2', defined at:
File "ssd_notebook.py", line 53, in <module>
saver = tf.train.Saver()
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 832, in __init__
self.build()
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 844, in build
self._build(self._filename, build_save=True, build_restore=True)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 881, in _build
build_save=build_save, build_restore=build_restore)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 513, in _build_internal
restore_sequentially, reshape)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 332, in _AddRestoreOps
restore_sequentially)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/training/saver.py", line 580, in bulk_restore
return io_ops.restore_v2(filename_tensor, names, slices, dtypes)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/ops/gen_io_ops.py", line 1572, in restore_v2
name=name)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3300, in create_op
op_def=op_def)
File "/opt/anaconda3/envs/dlipy3/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1801, in __init__
self._traceback = tf_stack.extract_stack() NotFoundError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error: Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]]
[[node save/RestoreV2 (defined at ssd_notebook.py:53) ]]

在查找资料的过程中,出现了很多波折,百度上基本没有同样的错误,

最开始使用的代码是:

ckpt_filename = '../train_model/model.ckpt-1000'

尝试过很多种方法,比如下面这种方法,改了后还是报同样的错误。

ckpt_filename =  tf.train.latest_checkpoint('../train_model/model.ckpt-1000')

还有说模型没有完全保存,经过很多次训练,发现模型确实是成功保存了的。

还说是按照这个英文意思来解决,就是这个Key在ckpt文件里面没有。经查找资料用如下代码查看ckpt文件里面的key。

import os
from tensorflow.python import pywrap_tensorflow current_path = '****/SSD_small_object_detection/'
model_dir = os.path.join(current_path, 'train_model')
checkpoint_path = os.path.join(model_dir,'model.ckpt-1000') # 保存的ckpt文件名,不一定是这个
# Read data from checkpoint file
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
# Print tensor name and values
for key in var_to_shape_map:
print("tensor_name: ", key)
# print(reader.get_tensor(key)) # 打印变量的值,对我们查找问题没啥影响,打印出来反而影响找问题

确实得到了一点结果,如下图所示:

  

就算得到了结果,但是代码太复杂,本身也看不太懂,就想着实在没办法的话就尝试Debug下代码,但是我相信前面的步骤没有问题,然后终于发现了解决方法。

  

于是我在我自己的代码中将saver的定义改变一下

saver = tf.train.import_meta_graph("../train_model/model.ckpt-1000.meta")

错误成功解决。

Key ssd_300_vgg/block3_box/L2Normalization/gamma not found in checkpoint的解决方案的更多相关文章

  1. Redis百亿级Key存储方案(转)

    1 需求背景 该应用场景为DMP缓存存储需求,DMP需要管理非常多的第三方id数据,其中包括各媒体cookie与自身cookie(以下统称supperid)的mapping关系,还包括了supperi ...

  2. Redis百亿级Key存储方案

    1 需求背景 该应用场景为DMP缓存存储需求,DMP需要管理非常多的第三方id数据,其中包括各媒体cookie与自身cookie(以下统称supperid)的mapping关系,还包括了supperi ...

  3. 【Spark调优】大表join大表,少数key导致数据倾斜解决方案

    [使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一 ...

  4. 热点Key问题的发现与解决

    热点问题概述 产生原因 热点问题产生的原因大致有以下两种: 用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的 ...

  5. 谈一谈NOSQL的应用,Redis/Mongo

    1.心路历程 上年11月份来公司了,和另外一个同事一起,做了公司一个移动项目的微信公众号,然后为了推广微信公众号,策划那边需要我们做一些活动,包括抽奖,投票.最开始是没有用过redis的,公司因为考虑 ...

  6. iOS开发之使用Runtime给Model类赋值

    本篇博客算是给网络缓存打个基础吧,本篇博客先给出简单也是最容易使用的把字典转成实体类的方法,然后在给出如何使用Runtime来给Model实体类赋值.本篇博客会介绍一部分,主要是字典的key与Mode ...

  7. zabbix使用介绍

    zabbix自定义监控项 1.创建主机组,可以根据redis.mysql.web等创建对于的主机组 2.创建主机 3.创建Screens 4.自定义监控项 zabbix_agentd.conf配置文件 ...

  8. 《OD学hive》第六周20160731

    一.hive的压缩 1. hadoop的压缩 1)为什么需要压缩 MapReduce的性能瓶颈:网络IO.磁盘IO 数据量:对于MapReduce的优化,最主要.根本就是要能够减少数据量 Combin ...

  9. NOSQL的应用,Redis/Mongo

    NOSQL的应用,Redis/Mongo 1.心路历程 上年11月份来公司了,和另外一个同事一起,做了公司一个移动项目的微信公众号,然后为了推广微信公众号,策划那边需要我们做一些活动,包括抽奖,投票. ...

随机推荐

  1. iOS开发之--为UITextField监听数值变化的三种方法

    项目中有个验证码输入直接验证跳转页面,用的RAC来监听textfield的输入值,如下: @weakify(self); [self.codeView.textField.rac_textSignal ...

  2. Android 拖动条/滑动条控件、星级评分控件

    ProgressBar有2个子控件: SeekBar   拖动条控件 RatingBar   星级评分控件 1.拖动条控件 <SeekBar android:layout_width=" ...

  3. 如何只修改EFLAGS寄存器中一个标志位的值?

    版权声明:本文为博主原创文章,2019-08-23,22:21:42转载请附上原文出处链接和本声明.作者By-----溺心与沉浮----博客园   1.写汇编指令只影响CF位的值(不能影响其他标志位 ...

  4. 4.InfluxDB-InfluxQL基础语法教程--基本select语句

    本文翻译自官网,官网地址:(https://docs.influxdata.com/influxdb/v1.7/query_language/data_exploration/) 基本语法如下: SE ...

  5. CentOS7安装Oracle11gR2

     转自E路情人https://www.cnblogs.com/Q1013588888/p/9219128.html 一.安装CentOS-7_x86_64 1.CentOS7:带GUI的服务器(FTP ...

  6. 学习CNN系列二:训练过程

    卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间精确的数学表达式,只要用已知的模式对卷积神经网络加以训练,网络就具有输入.输出之间映射的 ...

  7. NLP中的预训练语言模型(三)—— XL-Net和Transformer-XL

    本篇带来XL-Net和它的基础结构Transformer-XL.在讲解XL-Net之前需要先了解Transformer-XL,Transformer-XL不属于预训练模型范畴,而是Transforme ...

  8. Caused by: org.hibernate.exception.SQLGrammarException: could not extract ResultSet

    org.springframework.dao.InvalidDataAccessResourceUsageException: could not extract ResultSet; SQL [n ...

  9. GCC 预处理,汇编,编译,链接,连接静态库,动态库

    gcc Record gcc -E file1.c > output gcc -E file1.c -o file1.i gcc -S file1.i -o file1.s gcc -S fil ...

  10. 201871010135 张玉晶《面向对象程序设计(java)》第十六周学习总结

    第一部分:总结教材14.1-14.3知识内容 并发 • 线程的概念 • 中断线程 • 线程状态 • 多线程调度 • 线程同步 一.线程的概念 1. 程序是一段静态的代码,它是应用程序执行的蓝本. 2. ...