Given a circular array C of integers represented by `A`, find the maximum possible sum of a non-empty subarray of C.

Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

Example 1:

Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3

Example 2:

Input: [5,-3,5]
Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10

Example 3:

Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4

Example 4:

Input: [3,-2,2,-3]
Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3

Example 5:

Input: [-2,-3,-1]
Output: -1 Explanation: Subarray [-1] has maximum sum -1

Note:

  1. -30000 <= A[i] <= 30000
  2. 1 <= A.length <= 30000

这道题让求环形子数组的最大和,对于环形数组,我们应该并不陌生,之前也做过类似的题目 [Circular Array Loop](http://www.cnblogs.com/grandyang/p/7658128.html),就是说遍历到末尾之后又能回到开头继续遍历。假如没有环形数组这一个条件,其实就跟之前那道 [Maximum Subarray](http://www.cnblogs.com/grandyang/p/4377150.html) 一样,解法比较直接易懂。这里加上了环形数组的条件,难度就增加了一些,需要用到一些 trick。既然是子数组,则意味着必须是相连的数字,而由于环形数组的存在,说明可以首尾相连,这样的话,最长子数组的范围可以有两种情况,一种是正常的,数组中的某一段子数组,另一种是分为两段的,即首尾相连的,可以参见 [大神 lee215 的帖子](https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass) 中的示意图。对于第一种情况,其实就是之前那道题 [Maximum Subarray](http://www.cnblogs.com/grandyang/p/4377150.html) 的做法,对于第二种情况,需要转换一下思路,除去两段的部分,中间剩的那段子数组其实是和最小的子数组,只要用之前的方法求出子数组的最小和,用数组总数字和一减,同样可以得到最大和。两种情况的最大和都要计算出来,取二者之间的较大值才是真正的和最大的子数组。但是这里有个 corner case 需要注意一下,假如数组中全是负数,那么和最小的子数组就是原数组本身,则求出的差值是0,而第一种情况求出的和最大的子数组也应该是负数,那么二者一比较,返回0就不对了,所以这种特殊情况需要单独处理一下,参见代码如下:

class Solution {
public:
int maxSubarraySumCircular(vector<int>& A) {
int sum = 0, mn = INT_MAX, mx = INT_MIN, curMax = 0, curMin = 0;
for (int num : A) {
curMin = min(curMin + num, num);
mn = min(mn, curMin);
curMax = max(curMax + num, num);
mx = max(mx, curMax);
sum += num;
}
return (sum - mn == 0) ? mx : max(mx, sum - mn);
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/918

类似题目:

Maximum Subarray

Circular Array Loop

参考资料:

https://leetcode.com/problems/maximum-sum-circular-subarray/

https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass

[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)

[LeetCode] 918. Maximum Sum Circular Subarray 环形子数组的最大和的更多相关文章

  1. LC 918. Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  2. 918. Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  3. Leetcode Week5 Maximum Sum Circular Subarray

    Question Given a circular array C of integers represented by A, find the maximum possible sum of a n ...

  4. [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  5. Maximum Sum Circular Subarray LT918

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...

  6. [LeetCode] 907. Sum of Subarray Minimums 子数组最小值之和

    Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...

  7. 动态规划-Maximum Subarray-Maximum Sum Circular Subarray

    2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...

  8. [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  9. [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

随机推荐

  1. NORDIC超低功耗蓝牙4.0 NRF51822QFAA和NRF51802QFAA

    51822-QFAA和51802-QFAA在FLASH RAM的容量没有差别, 两者都是出自NORDIC原厂,: 区别在于: 1.接收灵敏度 51802是-91dBm;51822是-93dBm,这个差 ...

  2. Docker系列之学习笔记

    一.Docker简介 1.1.Docker架构 Docker 使用客户端-服务器 (C/S) 架构模式,分为Docker守护进程和客户端,Docker 客户端,实际上是 docker 的二进制程序,D ...

  3. 【机器学习笔记】ID3构建决策树

    好多算法之类的,看理论描述,让人似懂非懂,代码走一走,现象就了然了. 引: from sklearn import tree names = ['size', 'scale', 'fruit', 'b ...

  4. SqlServer 查看数据库、添加数据文件

    一.查看SqlServer实例的数据库列表 1).直接在SSMS(SqlServer Management Studio)管理工具里面 展开实例下面的所有数据库便可查看  2).使用Transact- ...

  5. Delphi - OLE类实现TTS方式语音朗读

    Delphi调用OLE类实现TTS方式语音朗读 直接看代码: unit uMain; interface uses Windows, Messages, SysUtils, Variants, Cla ...

  6. laravel he stream or file "..laravel-2019-02-14.log" could not be opened: failed to open stream: Permission denied

    错误:The stream or file "/var/www/jianshu/storage/logs/laravel-2019-02-14.log" could not be ...

  7. Linux软件安装——软件包

    Linux软件安装——软件包 摘要:本文主要学习了Linux下软件安装的相关知识. 软件包 简介 Linux下的软件包众多,且几乎都是经GPL授权.免费开源(无偿公开源代码)的.这意味着如果你具备修改 ...

  8. Java生鲜电商平台-商品价格的设计与架构

    Java生鲜电商平台-商品价格的设计与架构 说明:Java开源生鲜电商平台-商品价格的设计与架构,主要是对商品的价格进行研究与系统架构. 一.常见的电商价格 市场价(List Price):这个价格仅 ...

  9. SVN每日定时备份脚本

    SVN每日定时备份脚本: @ECHO off REM SVN安装目录 SET SVN_HOME="D:\Program Files\VisualSVNServer" REM 版本库 ...

  10. addEventListener和JavaScript的事件机制

    JavaScript的事件处理分为两个阶段: 捕获阶段:从根节点向event.target层层传递 冒泡阶段:从event.target向根节点层层传递 addEventListener(eventN ...