一直想把这几个插值公式用代码实现一下,今天闲着没事,尝试尝试。

先从最简单的拉格朗日插值开始!关于拉格朗日插值公式的基础知识就不赘述,百度上一搜一大堆。

基本思路是首先从文件读入给出的样本点,根据输入的插值次数和想要预测的点的x选择合适的样本点区间,最后计算基函数得到结果。直接看代码!(注:这里说样本点不是很准确,实在词穷找不到一个更好的描述。。。)

str2double

一个小问题就是怎样将python中的str类型转换成float类型,毕竟我们给出的样本点不一定总是整数,而且也需要做一些容错处理,比如多个+、多个-等等,也应该能识别为正确的数。所以实现了一个str2double方法。

import re
def str2double(str_num):
pattern = re.compile(r'^((\+*)|(\-*))?(\d+)(.(\d+))?$')
m = pattern.match(str_num)
if m is None:
return m
else:
sign = 1 if str_num[0] == '+' or '0' <= str_num[0] <= '9' else -1
num = re.sub(r'(\++)|(\-+)', "", m.group(0))
matchObj = re.match(r'^\d+$', num)
if matchObj is not None:
num = sign * int(matchObj.group(0))
else:
matchObj = re.match(r'^(\d+).(\d+)$', num)
if matchObj is not None:
integer = int(matchObj.group(1))
fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
num = sign * (integer + fraction)
return num

我使用了正则表达式来实现,pattern = re.compile(r'^((\+*)|(\-*))?(\d+)(.(\d+))?$')可以匹配我上面提到的所有类型的整数和浮点数,之后进行匹配,匹配成功,如果是整数,直接return整数部分,这个用(int)强制转换即可;如果是浮点数,那么用(\d+)这个正则表达式再次匹配,分别得到整数部分和小数部分,整数部分的处理和上面类似,小数部分则用乘以pow(10, -小数位数)得到,之后直接相加即可。这里为了支持多个+或者-,使用re.sub方法将符号去掉,所以就需要用sign来记录数字的正负,在最后return时乘上sign即可。

binary_search

def binary_search(point_set, n, x):
first = 0
length = len(point_set)
last = length
while first < last:
mid = (first + last) // 2
if point_set[mid][0] < x:
first = mid + 1
elif point_set[mid][0] == x:
return mid
else:
last = mid
last = last if last != length else last-1 head = last - 1
tail = last
while n > 0:
if head != -1:
n -= 1
head -= 1
if tail != length:
n -= 1
tail += 1
return [head+1, tail-1] if n == 0 else [head+1, tail-2]

这里point_set是全部样本点的集合,n是输入的插值次数,x是输入的预测点。返回合适的插值区间,即尽可能地把x包在里面。

因为要根据输入得到合适的插值区间,所以就涉及查找方面的知识。这里使用了二分查找,先对样本点集合point_set进行排序(升序),找到第一个大于需要预测点的样本点,在它的两侧扩展区间,直到满足插值次数要求。这里我的实现有些问题,可能会出现n=-1因为tail多加了一次,就在while循环外又进行了一次判断,n=-1tail-2,这个实现的确不好,可能还会有bug。。。

最后,剩下的内容比较好理解,直接放上全部代码。

import re
import matplotlib.pyplot as plt
import numpy as np def str2double(str_num):
pattern = re.compile(r'^((\+*)|(\-*))?(\d+)(.(\d+))?$')
m = pattern.match(str_num)
if m is None:
return m
else:
sign = 1 if str_num[0] == '+' or '0' <= str_num[0] <= '9' else -1
num = re.sub(r'(\++)|(\-+)', "", m.group(0))
matchObj = re.match(r'^\d+$', num)
if matchObj is not None:
num = sign * int(matchObj.group(0))
else:
matchObj = re.match(r'^(\d+).(\d+)$', num)
if matchObj is not None:
integer = int(matchObj.group(1))
fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
num = sign * (integer + fraction)
return num def preprocess():
f = open("input.txt", "r")
lines = f.readlines()
lines = [line.strip('\n') for line in lines]
point_set = list()
for line in lines:
point = list(filter(None, line.split(" ")))
point = [str2double(pos) for pos in point]
point_set.append(point)
return point_set def lagrangeFit(point_set, x):
res = 0
for i in range(len(point_set)):
L = 1
for j in range(len(point_set)):
if i == j:
continue
else:
L = L * (x - point_set[j][0]) / (point_set[i][0] - point_set[j][0])
L = L * point_set[i][1]
res += L
return res def showbasis(point_set):
print("Lagrange Basis Function:\n")
for i in range(len(point_set)):
top = ""
buttom = ""
for j in range(len(point_set)):
if i == j:
continue
else:
top += "(x-{})".format(point_set[j][0])
buttom += "({}-{})".format(point_set[i][0], point_set[j][0])
print("Basis function{}:".format(i))
print("\t\t{}".format(top))
print("\t\t{}".format(buttom)) def binary_search(point_set, n, x):
first = 0
length = len(point_set)
last = length
while first < last:
mid = (first + last) // 2
if point_set[mid][0] < x:
first = mid + 1
elif point_set[mid][0] == x:
return mid
else:
last = mid
last = last if last != length else last-1 head = last - 1
tail = last
while n > 0:
if head != -1:
n -= 1
head -= 1
if tail != length:
n -= 1
tail += 1
return [head+1, tail-1] if n == 0 else [head+1, tail-2] if __name__ == '__main__':
pred_x = input("Predict x:")
pred_x = float(pred_x)
n = input("Interpolation times:")
n = int(n)
point_set = preprocess()
point_set = sorted(point_set, key=lambda a: a[0])
span = binary_search(point_set, n+1, pred_x)
print("Chosen points: {}".format(point_set[span[0]:span[1]+1]))
showbasis(point_set[span[0]:span[1]+1]) X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
S = np.sin(X)
L = [lagrangeFit(point_set, x) for x in X]
L1 = [lagrangeFit(point_set[span[0]:span[1]+1], x) for x in X] plt.figure(figsize=(8, 4))
plt.plot(X, S, label="$sin(x)$", color="red", linewidth=2)
plt.plot(X, L, label="$LagrangeFit-all$", color="blue", linewidth=2)
plt.plot(X, L1, label="$LagrangeFit-special$", color="green", linewidth=2)
plt.xlabel('x')
plt.ylabel('y')
plt.title("$sin(x)$ and Lagrange Fit")
plt.legend()
plt.show()

About Input

使用了input.txt进行样本点读入,每一行一个点,中间有一个空格。

结果

感觉挺好玩的hhh,过几天试试牛顿插值!掰掰!

【数值分析】Python实现Lagrange插值的更多相关文章

  1. Python实现Newton和lagrange插值

    一.介绍Newton和lagrange插值:给出一组数据进行Newton和lagrange插值,同时将结果用plot呈现出来1.首先是Lagrange插值:根据插值的方法,先对每次的结果求积,在对结果 ...

  2. 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数

    数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...

  3. Python数值计算之插值曲线拟合-01

        3 插值与曲线拟合 Interpolation and Curve Fitting 给定n+1个数据点(xi,yi), i = 0,1,2,…,n,评估y(x). 3.1 介绍(introdu ...

  4. Note -「Lagrange 插值」学习笔记

    目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...

  5. Lagrange插值C++程序

    输入:插值节点数组.插值节点处的函数值数组,待求点 输出:函数值 代码如下:把printf的注释取消掉,能打印出中间计算过程,包括Lagrange多项式的求解,多项式每一项等等(代码多次修改,这些pr ...

  6. Python SciPy库——插值与拟合

    插值与拟合 原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 # -*- coding: utf-8 -*- import numpy a ...

  7. 数值计算方法实验之Lagrange 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  8. 转Python SciPy库——拟合与插值

    1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq p ...

  9. OpenCASCADE Interpolation - Lagrange

    OpenCASCADE Interpolation - Lagrange eryar@163.com Abstract. Power basis polynomial is the most simp ...

随机推荐

  1. vue学习(1) vue-cli 项目搭建

    vue学习(1)  vue-cli 项目搭建 一.windows环境 1. 下载node.js安装包 官网:https://nodejs.org/en/download/ 选择LTS下载 2. 安装 ...

  2. MySQL分组查询每组最新的一条数据(通俗易懂)

    开发中经常会遇到,分组查询最新数据的问题,比如下面这张表(查询每个地址最新的一条记录): sql如下: -- ---------------------------- -- Table structu ...

  3. 在Controller中添加事务管理

    文章参考了此博客: https://blog.csdn.net/qq_40594137/article/details/82772545 写这篇文章之前先说明一下: 1. Controller中添加事 ...

  4. Windows Server 2008 R2 + IIS 环境部署Asp.Net Core App

    Windows + IIS 环境部署Asp.Net Core App   环境:Windows Server 2012, IIS 8, Asp.Net Core 1.1. 不少人第一次在IIS中部署A ...

  5. Mysql 库表操作初识

    Mysql 库表操作初识 终端登录mysql 这里只演示win下, cmd 终端. 至于怎么在win下, linux, mac安装, 感觉这是一个入门级的百度搜索问题, 安装都搞不定, 确实有点尴尬, ...

  6. 使用SSH配置git服务器免密提交

    1. 生成SSH 1.1下载 下载工具 puttygen.exe ,当然其他工具请自行搜索. 下载地址: 下载地址1   百度网盘 (提取码: if8g)https://pan.baidu.com/s ...

  7. Vi 和 Vim 编辑器详细使用方法

    学习linux的一项必会技能,熟练使用vi/vim编辑器那便最重要的了.不过一堆操作看的也是太头疼了,以下整理了些常用到的命令. 工作模式 vi编辑界面有三种不同的工作模式,分别为命令模式.输入模式. ...

  8. composer的用法笔记

    一.到compose官网下载 composer.exe 的安装的文件,直接打开安装,在安装的目录的要选择到,你的开发环境中的 php.exe 的所在目录里..例如:D:\phpStudy\php\ph ...

  9. 【Java并发编程之深入理解】Synchronized的使用

    原文:https://blog.csdn.net/zjy15203167987/article/details/82531772 1.为什么要使用synchronized 在并发编程中存在线程安全问题 ...

  10. TCN时间卷积网络——解决LSTM的并发问题

    TCN是指时间卷积网络,一种新型的可以用来解决时间序列预测的算法.在这一两年中已有多篇论文提出,但是普遍认为下篇论文是TCN的开端. 论文名称: An Empirical Evaluation of ...