【数值分析】Python实现Lagrange插值
一直想把这几个插值公式用代码实现一下,今天闲着没事,尝试尝试。
先从最简单的拉格朗日插值开始!关于拉格朗日插值公式的基础知识就不赘述,百度上一搜一大堆。
基本思路是首先从文件读入给出的样本点,根据输入的插值次数和想要预测的点的x选择合适的样本点区间,最后计算基函数得到结果。直接看代码!(注:这里说样本点不是很准确,实在词穷找不到一个更好的描述。。。)
str2double
一个小问题就是怎样将python中的str类型转换成float类型,毕竟我们给出的样本点不一定总是整数,而且也需要做一些容错处理,比如多个+、多个-等等,也应该能识别为正确的数。所以实现了一个str2double方法。
import re
def str2double(str_num):
pattern = re.compile(r'^((\+*)|(\-*))?(\d+)(.(\d+))?$')
m = pattern.match(str_num)
if m is None:
return m
else:
sign = 1 if str_num[0] == '+' or '0' <= str_num[0] <= '9' else -1
num = re.sub(r'(\++)|(\-+)', "", m.group(0))
matchObj = re.match(r'^\d+$', num)
if matchObj is not None:
num = sign * int(matchObj.group(0))
else:
matchObj = re.match(r'^(\d+).(\d+)$', num)
if matchObj is not None:
integer = int(matchObj.group(1))
fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
num = sign * (integer + fraction)
return num
我使用了正则表达式来实现,pattern = re.compile(r'^((\+*)|(\-*))?(\d+)(.(\d+))?$')
可以匹配我上面提到的所有类型的整数和浮点数,之后进行匹配,匹配成功,如果是整数,直接return整数部分,这个用(int)
强制转换即可;如果是浮点数,那么用(\d+)
这个正则表达式再次匹配,分别得到整数部分和小数部分,整数部分的处理和上面类似,小数部分则用乘以pow(10, -小数位数)
得到,之后直接相加即可。这里为了支持多个+或者-,使用re.sub方法将符号去掉,所以就需要用sign来记录数字的正负,在最后return时乘上sign即可。
binary_search
def binary_search(point_set, n, x):
first = 0
length = len(point_set)
last = length
while first < last:
mid = (first + last) // 2
if point_set[mid][0] < x:
first = mid + 1
elif point_set[mid][0] == x:
return mid
else:
last = mid
last = last if last != length else last-1
head = last - 1
tail = last
while n > 0:
if head != -1:
n -= 1
head -= 1
if tail != length:
n -= 1
tail += 1
return [head+1, tail-1] if n == 0 else [head+1, tail-2]
这里point_set是全部样本点的集合,n是输入的插值次数,x是输入的预测点。返回合适的插值区间,即尽可能地把x包在里面。
因为要根据输入得到合适的插值区间,所以就涉及查找方面的知识。这里使用了二分查找,先对样本点集合point_set
进行排序(升序),找到第一个大于需要预测点的样本点,在它的两侧扩展区间,直到满足插值次数要求。这里我的实现有些问题,可能会出现n=-1
因为tail
多加了一次,就在while
循环外又进行了一次判断,n=-1
时tail-2
,这个实现的确不好,可能还会有bug。。。
最后,剩下的内容比较好理解,直接放上全部代码。
import re
import matplotlib.pyplot as plt
import numpy as np
def str2double(str_num):
pattern = re.compile(r'^((\+*)|(\-*))?(\d+)(.(\d+))?$')
m = pattern.match(str_num)
if m is None:
return m
else:
sign = 1 if str_num[0] == '+' or '0' <= str_num[0] <= '9' else -1
num = re.sub(r'(\++)|(\-+)', "", m.group(0))
matchObj = re.match(r'^\d+$', num)
if matchObj is not None:
num = sign * int(matchObj.group(0))
else:
matchObj = re.match(r'^(\d+).(\d+)$', num)
if matchObj is not None:
integer = int(matchObj.group(1))
fraction = int(matchObj.group(2)) * pow(10, -1*(len(matchObj.group(2))))
num = sign * (integer + fraction)
return num
def preprocess():
f = open("input.txt", "r")
lines = f.readlines()
lines = [line.strip('\n') for line in lines]
point_set = list()
for line in lines:
point = list(filter(None, line.split(" ")))
point = [str2double(pos) for pos in point]
point_set.append(point)
return point_set
def lagrangeFit(point_set, x):
res = 0
for i in range(len(point_set)):
L = 1
for j in range(len(point_set)):
if i == j:
continue
else:
L = L * (x - point_set[j][0]) / (point_set[i][0] - point_set[j][0])
L = L * point_set[i][1]
res += L
return res
def showbasis(point_set):
print("Lagrange Basis Function:\n")
for i in range(len(point_set)):
top = ""
buttom = ""
for j in range(len(point_set)):
if i == j:
continue
else:
top += "(x-{})".format(point_set[j][0])
buttom += "({}-{})".format(point_set[i][0], point_set[j][0])
print("Basis function{}:".format(i))
print("\t\t{}".format(top))
print("\t\t{}".format(buttom))
def binary_search(point_set, n, x):
first = 0
length = len(point_set)
last = length
while first < last:
mid = (first + last) // 2
if point_set[mid][0] < x:
first = mid + 1
elif point_set[mid][0] == x:
return mid
else:
last = mid
last = last if last != length else last-1
head = last - 1
tail = last
while n > 0:
if head != -1:
n -= 1
head -= 1
if tail != length:
n -= 1
tail += 1
return [head+1, tail-1] if n == 0 else [head+1, tail-2]
if __name__ == '__main__':
pred_x = input("Predict x:")
pred_x = float(pred_x)
n = input("Interpolation times:")
n = int(n)
point_set = preprocess()
point_set = sorted(point_set, key=lambda a: a[0])
span = binary_search(point_set, n+1, pred_x)
print("Chosen points: {}".format(point_set[span[0]:span[1]+1]))
showbasis(point_set[span[0]:span[1]+1])
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
S = np.sin(X)
L = [lagrangeFit(point_set, x) for x in X]
L1 = [lagrangeFit(point_set[span[0]:span[1]+1], x) for x in X]
plt.figure(figsize=(8, 4))
plt.plot(X, S, label="$sin(x)$", color="red", linewidth=2)
plt.plot(X, L, label="$LagrangeFit-all$", color="blue", linewidth=2)
plt.plot(X, L1, label="$LagrangeFit-special$", color="green", linewidth=2)
plt.xlabel('x')
plt.ylabel('y')
plt.title("$sin(x)$ and Lagrange Fit")
plt.legend()
plt.show()
About Input
使用了input.txt进行样本点读入,每一行一个点,中间有一个空格。
结果
感觉挺好玩的hhh,过几天试试牛顿插值!掰掰!
【数值分析】Python实现Lagrange插值的更多相关文章
- Python实现Newton和lagrange插值
一.介绍Newton和lagrange插值:给出一组数据进行Newton和lagrange插值,同时将结果用plot呈现出来1.首先是Lagrange插值:根据插值的方法,先对每次的结果求积,在对结果 ...
- 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数
数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...
- Python数值计算之插值曲线拟合-01
3 插值与曲线拟合 Interpolation and Curve Fitting 给定n+1个数据点(xi,yi), i = 0,1,2,…,n,评估y(x). 3.1 介绍(introdu ...
- Note -「Lagrange 插值」学习笔记
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 ...
- Lagrange插值C++程序
输入:插值节点数组.插值节点处的函数值数组,待求点 输出:函数值 代码如下:把printf的注释取消掉,能打印出中间计算过程,包括Lagrange多项式的求解,多项式每一项等等(代码多次修改,这些pr ...
- Python SciPy库——插值与拟合
插值与拟合 原文链接:https://zhuanlan.zhihu.com/p/28149195 1.最小二乘拟合 实例1 # -*- coding: utf-8 -*- import numpy a ...
- 数值计算方法实验之Lagrange 多项式插值 (Python 代码)
一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...
- 转Python SciPy库——拟合与插值
1.最小二乘拟合 实例1 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq p ...
- OpenCASCADE Interpolation - Lagrange
OpenCASCADE Interpolation - Lagrange eryar@163.com Abstract. Power basis polynomial is the most simp ...
随机推荐
- Flink入门 - API
final StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutio ...
- 英语DIAMAUND钻石指坚硬不可侵犯的物质
首先谈谈钻石和金刚石的名称.金刚石是一种天然矿物,是钻石的原石.习惯上人们常将加工过的金刚石称为钻石,而未加工过的称为金刚石(当然,有的金刚石不用加工便可应用).钻石是那些达到宝石级别的金刚石晶体切磨 ...
- iOS学习——iOS项目增加新的字体
基本思路 在项目开发过程中,iOS系统自带的字体库可能不适应需求,需要导入其他的字体库.下面是iOS项目增加新的字体的基本思路,基本上分为三步: 将字体库添加到项目中 在info.plist中添加所需 ...
- day 06 预科
目录 if判断 if判断习题 for循环 for循环习题 微信机器人 if判断 # 一条狗朝你过来了,你会干吗? 判断: 如果狗是大长腿牵来的狗--->打招呼:如果是条疯狗,跑. # if:如果 ...
- 尚学堂JAVA基础学习笔记
目录 尚学堂JAVA基础学习笔记 写在前面 第1章 JAVA入门 第2章 数据类型和运算符 第3章 控制语句 第4章 Java面向对象基础 1. 面向对象基础 2. 面向对象的内存分析 3. 构造方法 ...
- Java集合框架总结2_Map
1. Map接口概述 Map与Collection并列存在.用于保存具有映射关系的数据:key-value: Map中的key和value都可以是任何应用类型的数据: Map中的key用Set来存放, ...
- Github 上 36 个最实用的 Vue 开源库
任何一个开发者,都是十分喜欢使用开源软件包的.因为它使开发工作变得更快速.高效.容易.如果没有开源软件包,开发工作将变得疲惫不堪,不断的重复造轮子! 下面整理了 Github 上 36 个实用的 Vu ...
- python 列表的属性和方法整理
list属性和方法 补一个超实用的函数 envmerate(列表名, [start=0]) 作用: 将一个可遍历的数据对象(如列表.元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用 ...
- 【Audiophobia UVA - 10048 】【Floyd算法】
题目大意:从a城市到b城市的路径中,尽可能让一路上的最大噪音最小. 题目思路:设d [ i ][ j ]表示 i 到 j 的最大噪音的最小值. 那么d [ i ][ j ] = min( d[ i ] ...
- 运维笔试Python编程题
一.用Python语言把列表[1,3,5,7,9]倒序并将元素变为字符类型,请写出多种方法: 第一种方法: list = [1, 3, 5, 7, 9] list.reverse() list2 = ...