Matlab 非线性规划问题模型代码
非线性规划问题的基本内容
非线性规划解决的是自变量在一定的非线性约束或线性约束组合条件下,使得非线性目标函数求得最大值或者最小值的问题。
当目标函数为最小值时,上述问题可以写成如下形式:
\]
\left\{\begin{array}{l}
{\mathbf{A}\mathbf{X} \leqslant \mathbf{B}}
\\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}}
\\ G(x) \leqslant 0
\\ H_{\mathrm{eq}}(x) = 0
\\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}}
\end{array}\right.
\]
其中
\(F(x)\) 为非线性目标函数
\(G(x)\) 为非线性不等式约束条件
\(H_\mathrm{eq}(x)\) 为非线性等式约束条件
\(\mathbf{X}\) 为决策变量向量
\(\mathbf{A}\) 为线性不等式系数矩阵
\(\mathbf{B}\) 为线性不等式右端常数向量
\(\mathbf{A}_\mathrm{eq}\) 为线性等式系数矩阵
\(\mathbf{B}_\mathrm{eq}\) 为线性等式右端常数向量
\(\mathbf{L B}\) 为决策变量下界向量
\(\mathbf{U B}\) 为决策变量上界向量
Matlab模型代码
调用形式
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) % 统一形式
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(F,X0,A,B,Aeq,Beq,LB,UB,NONLCON) % 线性目标函数,包含非线性约束
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(@(X)MYOBJ(X),X0,A,B,Aeq,Beq,LB,UB,@(X)MYCON(X)) % 自己定义目标函数和非线性约束函数
% 目标函数
function F = MYOBJ(X)
F = ......
% 非线性约束函数
function [G,Heq] = MYCON(X)
G = ..... % 非线性不等式约束条件
Heq = ..... % 非线性等式约束条件
输入变量
- FUN 为目标函数,可以自己定义,输入变量X,输出目标值
- X0 为初始解
- A 为不等式约束系数矩阵(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)
- B 为不等式右端常数向量(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)
- Aeq 为等式约束系数矩阵
- Beq 为等式右端常数向量
- LB 为决策变量下界向量
- UB为决策变量上界向量
- NONLCON 为非线性约束,可以自己定义,其中包括非线性不等式约束,非线性等式约束两种约束。输入变量X,输出不等式计算值,等式计算值
在调用时,输入参数不存在时,可以将其输入用 []
空矩阵表示。
输出变量
- X 为最优解
- FVAL 为最优目标值
- EXITFLAG 为运行结束标志,当等于1时,表示程序收敛于解 X;当等于0时,表示程序运行次数到达最大;当小于0时,说明情况较多
- OUTPUT 为程序迭代次数
- LAMBDA 为解X相关的Largrange乘子和影子价格
案例演示
目标函数与约束条件
\]
Matlab程序
clc
clear
close all
x0=rand(2,1); % 随机产生初始解
A=[];
B=[];
Aeq=[];
Beq=[];
LB=[0,0];
UB=[];
[x,fval,exitflag]=fmincon(@(x)myobj(x),x0,A,B,Aeq,Beq,LB,UB,@(x)mycon(x))
% 目标函数
function F = myobj(x)
F = x(1)^2+x(2)^2+8;
end
% 非线性约束函数
function [G,Heq] = mycon(x)
G = -x(1)^2+x(2);
Heq = -x(1)-x(2)^2+2;
end
运行结果
x =
1.0000
1.0000
fval =
10.0000
exitflag =
1
Matlab 非线性规划问题模型代码的更多相关文章
- Matlab 线性规划问题模型代码
线性规划问题的基本内容 线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题. \[ \min z=\sum_{j=1}^{n} f_{j} x_{j} \] \[ ...
- Matlab 图论最短路问题模型代码
最短路问题的基本内容 最短路问题研究的是,在一个点与点之间连接形成的网络图中,对应路径赋予一定的权重(可以理解为两点之间的距离),计算任意两点之间如何和走,路径最短的问题.在这里的距离可以理解成各种两 ...
- Matlab 模拟退火算法模型代码
function [best_solution,best_fit,iter] = mySa(solution,a,t0,tf,Markov) % 模拟退化算法 % ===== 输入 ======% % ...
- Matlab 整数线性规划问题模型代码
整数线性规划问题的基本内容 整数线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题.其中自变量只能取整数.特别地,当自变量只能取0或者1时,称之为 0-1 整数规 ...
- [原创] Matlab 指派问题模型代码
指派问题的基本内容 一般来说指派问题解决的是如何将任务分配到人,使得任务完成的效益最大化(成本型效益则求最小值,利润型效益则求最大值).上述问题一个 0 - 1 整数规划问题. 问题围绕着任务和人展开 ...
- MATLAB Coder从MATLAB生成C/C++代码步骤
MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. 使用MATLAB Coder产生代码的3个步骤: 准备用于产生代码的MATLAB算法: 检查MATLAB代 ...
- 转 举例说明使用MATLAB Coder从MATLAB生成C/C++代码步骤
MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. http://www.mathworks.cn/products/matlab-coder/ 使用MATL ...
- 多路复用I/O模型poll() 模型 代码实现
多路复用I/O模型poll() 模型 代码实现 poll()机制和select()机制是相似的,都是对多个描述符进行轮询的方式. 不同的是poll()没有描述符数目的限制. 是通过struct pol ...
- Windows Socket五种I/O模型——代码全攻略(转)
Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模式.可以通过多线程技术进行处理. 非阻塞模式:执行I/O操 ...
随机推荐
- POJ1321-棋盘问题-(dfs)
http://poj.org/problem?id=1321 解题: dfs中,两种情况,某一行摆不摆?某一列摆不摆? #include<stdio.h> #include<iost ...
- 一起学Makefile(四)
变量的定义 makefile中的变量,与C语言中的宏类似,它为一个文本字符串(变量的值,其类型只能是字符串类型)提供了一个名字(变量名). 变量的基本格式: 变量名 赋值符 变量值 变量名指的 ...
- windows内核代码之进程操作
[toc] 一丶简介 整理一下windows内核中.常用的代码.这里只整理下进程的相关代码. 二丶 windows内核之遍历进程 内核中记录进程的结构体是EPROCESS结构.所以只需要遍历这个结构即 ...
- Spring Boot 之配置导入,强大到不行!
我们知道在 Spring Boot 中可以用一个 @Configuration 配置文件来配置所有 Bean 及其他配置(不会的看这篇文章:Spring零配置之@Configuration注解详解), ...
- Spring Boot集成Mybatis注解相关
mybatis3开始支持java注解,使用java注解可以替代xml配置文件,简化代码.下面来看一下怎么在spring boot中使用mybatis注解. 1 使用mybatis注解需要的配置.如下面 ...
- java join()基本用法与说明解释
join()方法的作用,是等待这个线程结束: 也就是说,t.join()方法阻塞调用此方法的线程(calling thread)进入 TIMED_WAITING 状态,直到线程t完成,此线程再继续: ...
- 如何在 Apache Hive 中解析 Json 数组
我们都知道,Hive 内部提供了大量的内置函数用于处理各种类型的需求,参见官方文档:Hive Operators and User-Defined Functions (UDFs).我们从这些内置的 ...
- CentOS7 增加回环地址
添加回环地址的命令和说明如下: #添加一个回环地址到lo网卡,添加多个可以改lo:后边的序号 [要添加的地址] netmask 255.255.255.255 broadcast [要添加的地址] # ...
- android双进程守护,让程序崩溃后一定可以重启
由于我们做的是机器人上的软件,而机器人是24小时不间断服务的,这就要求我们的软件不能退出到系统桌面.当然最好是能够做到程序能够不卡顿,不崩溃,自己不退出.由于我们引用了很多第三方的开发包,也不能保证他 ...
- ContentProvider数据库共享之——实例讲解
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/harvic880925/article/details/44591631 前言:现在这段时间没这 ...