题目链接

http://codeforces.com/contest/1264/problem/C

题解

首先显然断点把序列分成几部分,总答案就等于所有部分的答案之和。考虑如何求一部分内的答案。首先有个非常经典的dp是\(f_i\)表示期望多少次从\(i\)走到\(i+1\), 但是按此方法并不能(至少我不会)导出一个方便维护修改的做法。

这时可以转换思路,考虑另一种DP,设\(f_i\)表示\(i\)这个点期望经过多少次,则有\(f_i=\frac{1}{p_i}f_{i+1}, f_{n+1}=1\), 即\(f_i=\frac{1}{\prod^n_{j=i}p_j}\).

然后就很容易维护了,只需要求后缀积及其后缀和即可。每次二分前驱后继,算一算贡献差即可。

时间复杂度\(O(n\log n)\).

代码

#include<bits/stdc++.h>
#define llong long long
using namespace std; const int N = 2e5;
const int P = 998244353;
set<int> b;
llong p[N+3];
llong s[N+3],ss[N+3];
bool f[N+3];
int n,q; llong ans; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);} int getprv(int x) {set<int>::iterator iter=b.lower_bound(x); iter--; return *iter;} void Flip(int x)
{
int l = getprv(x),r = *b.upper_bound(x);
llong tmp = (ss[l]-ss[x]+P)%P,coe = f[x]==0?(s[x]-s[r]+P)%P:(s[r]-s[x]+P)%P;
ans = (ans+tmp*coe)%P;
if(!f[x]) {b.insert(x);} else {b.erase(x);}
f[x]^=1;
} int main()
{
scanf("%d%d",&n,&q);
for(int i=1; i<=n; i++) {scanf("%lld",&p[i]); p[i] = p[i]*mulinv(100)%P;}
b.insert(1); b.insert(n+1); f[1] = 1;
s[n+1] = 1ll; for(int i=n; i>=1; i--) {s[i] = s[i+1]*p[i]%P; ss[i] = (mulinv(s[i])+ss[i+1])%P;}
ans = ss[1];
for(int i=1; i<=q; i++)
{
int x; scanf("%d",&x);
Flip(x);
printf("%lld\n",ans);
}
return 0;
}

Codeforces 1264C/1265E Beautiful Mirrors with queries (概率期望、DP)的更多相关文章

  1. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  4. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  5. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  6. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  7. [BZOJ4832]抵制克苏恩(概率期望DP)

    方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #inc ...

  8. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

  9. [Codeforces 1265E]Beautiful Mirrors

    Description 题库链接 一共有 \(n\) 个关卡,你初始在第一个关卡.通过第 \(i\) 个关卡的概率为 \(p_i\).每一轮你可以挑战一个关卡.若通过第 \(i\) 个关卡,则进入第 ...

随机推荐

  1. 【转载】C#使用Math.Ceiling方法对计算结果向上取整操作

    在C#的数值运算中,有时候需要对计算结果进行向上取整操作,支持设定结算结果的有效位数,Math.Ceiling方法是C#中专门用来对数值进行向上取整的方法,此方法和Math.Round方法.Math. ...

  2. js校验规则--去空格、加空格

    为了更加直观,有些号码需要加空格: // 拼接空格,每4位加一个空格 let bankAccount = '6228888888888888888'; let blank_value = bankAc ...

  3. springboot整合ActiveMQ1(基本使用)

    基本使用,https://www.tapme.top/blog/detail/2018-09-05-10-38 主备模式,https://www.tapme.top/blog/detail/2018- ...

  4. Java xml出现错误 javax.xml.transform.TransformerException: java.lang.NullPointerException

    转自:https://www.jb51.net/article/98644.htm Java xml出现错误 javax.xml.transform.TransformerException: jav ...

  5. Linux将用户添加到组的指令

    原文:https://blog.csdn.net/youmatterhsp/article/details/80549683:           https://www.cnblogs.com/cl ...

  6. mysqldump 备份与恢复数据库

    备份数据库 mysqldump -u root -plvtao test > /home/bak.sql 数据库还原,常用source 命令登陆 mysql -u root -p mysql&g ...

  7. jmeter + ant + jenkins 自动化集成环境搭建

    所需工具 一.jmeter 工具下载 https://jmeter.apache.org/  配置环境JDK等及各种插件 二.Ant安装(http://ant.apache.org/) 安装Ant是为 ...

  8. MVC模式:action、dao、model、service、util

    这就是一个典型的MVC: action:主要是Struts2,用来做跳转,比如jsp页面提交的表单就是进入到action里面,然后action再调用service里面的逻辑,最后返回到jsp响应请求. ...

  9. SecurityProtocolType 枚举

    地址:https://docs.microsoft.com/zh-cn/dotnet/api/system.net.securityprotocoltype?redirectedfrom=MSDN&a ...

  10. 在linux上安装python

    转自:https://www.cnblogs.com/qq631243523/p/10191726.html 一,前言 centos7默认是装有python的,咱们先看一下 [root@glh ~ 2 ...