BZOJ3209: 花神的数论题(数位DP)
题目:
解析:
二进制的数位DP
因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\)
设\(n\)的二进制一共有\(num\)位,有\(sum[i]\)个数的二进制中有\(k\)个\(1\),
答案就是\(\prod_{i=1}^{num}i^{sum[i]}\)
用数位DP搞一下就好了
设\(f[i][j]\)表示到第\(i\)位有\(j\)个\(1\)时有多少个数
枚举\(k\),记搜一下。
由于可能会有很多数的二进制中有\(k\)个\(1\),所以用快速幂维护一下
相似思路的题还有1799: [Ahoi2009]self 同类分布
代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 60;
const int mod = 10000007;
int n, m, num;
int digit[N], f[N][N];
int qpow(int a, int b) {
int ans = 1;
while (b) {
if (b & 1) ans = (ans * a) % mod;
b >>= 1, a = (a * a) % mod;
}
return ans % mod;
}
int dfs(int pos, int sum, int cnt, int limit) {
if (pos == -1) return sum == cnt;
if (cnt > sum) return 0;
if (!limit && ~f[pos][cnt]) return f[pos][cnt];
int up = limit ? digit[pos] : 1;
int ans = 0;
for (int i = 0; i <= up; ++i)
ans = ans + dfs(pos - 1, sum, cnt + i, limit && i == up);
if (!limit) f[pos][cnt] = ans;
return ans;
}
int divide(int x) {
int num = 0, ans = 1;
for ( ; x; x /= 2) digit[num++] = x % 2;
for (int i = 1; i <= num; ++i) {
memset(f, -1, sizeof f);
ans = (ans * qpow(i, dfs(num - 1, i, 0, 1))) % mod;
}
return ans % mod;
}
signed main() {
cin >> n;
cout << divide(n);
}
BZOJ3209: 花神的数论题(数位DP)的更多相关文章
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- 洛谷$ P$4317 花神的数论题 数位$dp$
正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...
- 花神的数论题(数位dp)
规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
随机推荐
- scikit-learn 中的 KMeans
语法 sklearn.cluster.KMeans(n_clusters=8, # 簇的个数, 默认为 8 init='k-means++', # 初始簇中心的获取方法 n_init=10, # 初始 ...
- AMD SATA Download (解决win10 磁盘占用100%问题)
需要下载的AMD SATA 驱动: 下载AMD SATA https://github.com/StoneIsDeveloper/UsefulTools/blob/master/AMD%20SATA/ ...
- xadmin引入celery4.0执行异步任务与定时任务
一.安装 pip install celery pip install django-celery-beat pip install django-celery-results pip install ...
- PAT 乙级 1036.跟奥巴马一起编程 C++/Java
题目来源 美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014 年底,为庆祝“计算机科学教育周”正式启动,奥巴马编写了很简单的计算机代码:在屏 ...
- 剑指offer 6:链表(从头到尾打印链表)
链表的数据结构 struct ListNode { int value; ListNode* next; }; 那么在链表的末尾添加一个节点的代码如下: void insert(ListNode** ...
- 【LG2605】[ZJOI2010]基站选址
[LG2605][ZJOI2010]基站选址 题面 洛谷 题解 先考虑一下暴力怎么写,设\(f_{i,j}\)表示当前\(dp\)到\(i\),且强制选\(i\),目前共放置\(j\)个的方案数. 那 ...
- nginx 配置状态监控
Nginx有内置一个状态页,需要在编译的时候指定参数--with-http_stub_status_module参数方可打开.也就是说,该功能是由http_stub_status_module模块提供 ...
- MybatisPlus使用代码生成器遇到的小问题
MyBatisPlus 在3.0.3版本之前使用代码生成器因为存在默认依赖,所以不需要其他的依赖,项目中使用的是3.0.1的版本,所以不用添加其他依赖,添加之后反倒是会报错,实际上MP官网上已经说明了 ...
- C++ new delete 一维数组 二维数组 三维数组
h----------------------------- #include "newandmalloc.h" #include <iostream> using n ...
- Android 10 终于来了!增加了不少新特性
前言 Android 10 正式发布了,根据官网的介绍,聚焦于隐私可控.手机自定义与使用效率,此版本主要带来了十大新特性: image 智能回复 使用机器学习来预测你在回复信息时可能会说些什么,这 ...