现在很痛苦,等过阵子回头看看,会发现其实那都不算事。

【题目描述】
定义一个排列 a 的价值为满足|a[i]-i|<=1 的 i 的数量。
给出三个正整数 n,m,p,求出长度为 n 且价值恰好为 m 的排列的个数对 p 取
模的结果。
【输入描述】
第一行两个正整数 T,p,T 为数据组数,p 为模数。
接下来 T 行,每行两个正整数 n,m。
【输出描述】
T 行,每行一个非负数,表示答案。
【输入样例】
5 1887415157
3 1
3 2
3 3
50 10
1500 200
【输出样例】
1
2
3
621655247
825984474
【数据范围】
10%的数据:n<=10
30%的数据:n<=15
50%的数据:n<=200
另有 10%的数据:m=1
另有 10%的数据:m=n-1
100%的数据:1<=T,n,m<=2000,2<=p<=10^12


题意:
定义一个排列 a 的价值为满足|a[i]-i|<=1 的 i 的数量。
给出三个正整数 n,m,p,求出长度为 n 且价值恰好为 m 的排列的个数对 p 取模的结果。
T组询问,p事先给出。

题解:
因为n,m <= 2000,而且p是事先给出的,所以我们可以一次性预处理出n,m <= 2000的答案。

考虑一个长度为i的排列如何变成长度为i+1的排列。
一种情况是我在它末尾加入了一个数i+1,另一种情况是我用i+1替换掉了原来排列中的一个数,然后把被换掉的数放到排列的末尾。
那么,这个排列权值的变化就是:
第一种情况:在它末尾加入了一个数i+1,权值+1。
第二种情况:用i+1替换掉一个数,权值 += 加的贡献 - 换掉的数的贡献。

在DP当中,我们只需要考虑替换掉的数是否是i,以及i是否在位置i/i-1即可。总共有5种本质不同的状态,分类讨论转移即可。
复杂度O(nm)。


#include<bits/stdc++.h>
using namespace std; typedef long long LL; const int N=; int q,n,m,u,v;
LL p,ans,f[N][N][],x; int rd(){
int re=,f=;char c=getchar();
while ((c<'')||(c>'')) {if (c=='-') f=-f;c=getchar();}
while ((c>='')&&(c<='')) {re=re*+c-'';c=getchar();}
return re*f;
} int main(){
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
cin>>q>>p;
memset(f,,sizeof(f));
f[][][]=1ll;
f[][][]=1ll;f[][][]=1ll; n=;
for (int i=;i<n;++i)
for (int j=;j<=n;++j){
for (int k=;k<=;++k){
x=f[i+][j+][]+f[i][j][k];
x=(x<p)?x:(x-p);
f[i+][j+][]=x;
u=j+((k%)==);
v=+(k!=);
x=f[i+][u][v]+f[i][j][k];
x=(x<p)?x:(x-p);
f[i+][u][v]=x;
} if (f[i][j][]>0ll){
f[i+][j-][]=(f[i+][j-][]+f[i][j][]*(LL)(j-))%p;
f[i+][j][]=(f[i+][j][]+f[i][j][]*(LL)(i-j))%p;
}
if (f[i][j][]>0ll){
x=f[i+][j][]+f[i][j][];
x=(x<p)?x:(x-p);
f[i+][j][]=x;
f[i+][j-][]=(f[i+][j-][]+f[i][j][]*(LL)(j-))%p;
f[i+][j][]=(f[i+][j][]+f[i][j][]*(LL)(i-j))%p;
}
if (f[i][j][]>0ll){
x=f[i+][j][]+f[i][j][];
x=(x<p)?x:(x-p);
f[i+][j][]=x;
f[i+][j-][]=(f[i+][j-][]+f[i][j][]*(LL)(j-))%p;
f[i+][j][]=(f[i+][j][]+f[i][j][]*(LL)(i-j-))%p;
}
if (f[i][j][]>0ll){
x=f[i+][j+][]+f[i][j][];
x=(x<p)?x:(x-p);
f[i+][j+][]=x;
f[i+][j-][]=(f[i+][j-][]+f[i][j][]*(LL)(j-))%p;
f[i+][j][]=(f[i+][j][]+f[i][j][]*(LL)(i-j-))%p;
}
if (f[i][j][]>0ll){
x=f[i+][j+][]+f[i][j][];
x=(x<p)?x:(x-p);
f[i+][j+][]=x;
if (j>) f[i+][j-][]=(f[i+][j-][]+f[i][j][]*(LL)(j))%p;
f[i+][j][]=(f[i+][j][]+f[i][j][]*(LL)(i-j-))%p;
}
} for (;q>;--q){
cin>>n>>m;
ans=(f[n][m][]+f[n][m][]+f[n][m][]+f[n][m][]+f[n][m][])%p;
cout<<ans<<'\n';
}
return ;
}

C 题解———2019.10.16的更多相关文章

  1. A 题解————2019.10.16

    [题目描述] 对于给定的一个正整数n, 判断n是否能分成若干个正整数之和 (可以重复) ,其中每个正整数都能表示成两个质数乘积. [输入描述]第一行一个正整数 q,表示询问组数.接下来 q 行,每行一 ...

  2. B 题解————2019.10.16

    相信他说的话,但不要当真 [题目描述]有一个长度为 n 的自然数序列 a,要求将这个序列恰好分成至少 m 个连续子段. 每个子段的价值为该子段的所有数的按位异或.要使所有子段的价值按位与的结果最大,输 ...

  3. 2019.10.16&17小结

    话说也蛮久没写小结了,主要这两次考试失分严重,还是总结下吧. 10.16 T1 小奇挖矿2 100/0 [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市 ...

  4. @CSP模拟2019.10.16 - T3@ 垃圾分类

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 为了保护环境,p6pou建设了一个垃圾分类器. 垃圾分类器是一个 ...

  5. js第二次作业——2019.10.16

    第一题:完成省城市的三级联动(包括湖南省),附代码和效果图. 1 <!DOCTYPE HTML> 2 <html> 3 <head> 4 </head> ...

  6. Fiborial 题解——2019.10.14

    一看到这个题 就感觉...cao,, 什么东西...??! 然后就开始暴力求Fn 然鹅我并不会写高精(我太菜了) 只能求到大概10左右 在吧Fn给质因数分解 求出其因子个数 妄图找到什么有关的规律 但 ...

  7. 忍者钩爪 ( ninja) 题解———2019.10.19

    可以到这里测..嘿嘿嘿 题目: [问题 描述 ] 小 Q 是一名酷爱钩爪的忍者, 最喜欢飞檐走壁的感觉, 有一天小 Q 发现一个练习使用钩 爪的好地方,决定在这里大显身手. 场景的天花板可以被描述为一 ...

  8. T1 :最小值(min)题解 ——2019.10.15

    思路: 对于 % 30 的数据,可以想到一个 Dp 方程: 其中dp[i]表示分割[1,i]的最大答案 代码: #include<cstdio> #include<cstring&g ...

  9. 背水一战 Windows 10 (16) - 动画: ThemeAnimation(主题动画)

    [源码下载] 背水一战 Windows 10 (16) - 动画: ThemeAnimation(主题动画) 作者:webabcd 介绍背水一战 Windows 10 之 动画 PopInThemeA ...

随机推荐

  1. unity资源机制(转)

    原文地址:https://www.jianshu.com/p/ca5cb9d910c0作者:重装机霸 2.资源概述 Unity必须通过导入将所支持的资源序列化,生成AssetComponents后,才 ...

  2. Mysql Update 流程摘抄

    原文: https://blog.csdn.net/weixin_38990431/article/details/89050101#9_449 2.2.2 重要日志模块 binlog binlog是 ...

  3. PG undo redo

    除了理所当前的各路文本记录(比方数据库的运行报错日志之类),PG的二进制类日志文件主要有两个,一个就是对应传统数据库理论的redo日志,理论上,所有数据的修改操作都会被记录到这个日志,在事务提交的时候 ...

  4. java中的7个位运算运算符

    位运算指的是针对整数的二进制进行的位移操作. 位运算提供比算术运算更高的效率,但是位运算的代码可读性较差,建议所有使用位运算的地方写上注释. Java中提供7个位运算符用于位运算. 左移(<&l ...

  5. 排序算法Java代码实现(六)—— 堆排序

    本片内容: 堆排序 堆排序 最大堆: 二叉堆是完全二叉树或者是近似完全二叉树, 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆.(父节点大于任何一个子节点) 算法思想: 把n个元素建立最大 ...

  6. Regex 首字母转大写/小写,全大写,全小写

    语法 \l 第一个字符小写,比[\L]或[\U]优先级别低,连续使用,第一个[\l]或[\u]优先 \L 后面所有字符小写,比[\l]或[\u]优先级别高 \u 第一个字符大写,比[\L]或[\U]优 ...

  7. C# 文件监听类 FileSystemWatcher 属性

    属性: Path——这个属性告诉FileSystemWatcher它需要监控哪条路径.例如,如果我们将这个属性设为“C:Temp”,对象就监控那个目录发生的所有改变.IncludeSubDirecto ...

  8. Delphi - 利用TRzTrayIcon实现WinFrm工程最小化到托盘

    第三方RC控件的安装 浏览器搜索Delphi Rz控件下载,找到下载一个安装文件,解压后点击RC3.exe一键安装. Delphi WinFrm工程最小化到托盘 Delphi新建WinFrm工程,在主 ...

  9. C#7语法快速参考-第一章 Hello World

    选择IDE 要开始使用C#编程,您需要一个支持微软.NET框架的集成开发环境(IDE).最受欢迎的选择是微软自己的Visual Studio.初学可以使用Visual Studio Community ...

  10. 自定义组件实现双向绑定v-model

    自定义组件实现 v-model 双向绑定,首先要先明白 v-model,这个指令到底实现了什么? v-model实际做的事情就是:传入一个value属性值,然后监听input事件返回一个值,用该返回值 ...