Codeforces 484 E. Sign on Fence
[传送门]
题意就是给一排围栏,每个围栏都有一个高度,查询区间$\left[l, r\right]$之间长度为$w$的子区间的最小高度的最大值。
首先,这个最大值肯定是这个区间里的围栏的某个高度,如果是一个未出现过的高度,显然能有更高的高度满足条件。
那么就可以考虑在离散化后的高度数组里二分答案,然后check一下这个区间里是否有连续$w$个围栏的高度大于等于这个答案。
因为答案肯定是出现过的高度这个性质,那么可以考虑以高度建一棵可持久化线段树,先将高度数组离散化排好序,第$i$个版本的线段树代表的是下标位置的围栏的高度是否大于等于$h_i$,然后保存区间前缀最长连续1、后缀最长连续1、区间最长连续1。第$i$个版本由第$i-1$个版本再加上几个单点修改得来。
查询就保存区间最长前缀及最长后缀进行合并,合并过程更新一下答案。
说起来容易想起来难。我菜爆了。
#include <bits/stdc++.h>
using namespace std; const int N = 1e5 + ;
int n, a[N], h[N], root[N], tol, ans;
vector<int> G[N]; struct Seg {
struct Tree {
int lp, rp, len, pre, suf, mx;
} tree[N * ];
inline void pushup(int p) {
tree[p].pre = tree[tree[p].lp].pre + (tree[tree[p].lp].pre == tree[tree[p].lp].len ? tree[tree[p].rp].pre : );
tree[p].suf = tree[tree[p].rp].suf + (tree[tree[p].rp].suf == tree[tree[p].rp].len ? tree[tree[p].lp].suf : );
tree[p].mx = max(tree[tree[p].lp].suf + tree[tree[p].rp].pre, max(tree[tree[p].lp].mx, tree[tree[p].rp].mx));
}
void build(int &p, int l, int r) {
p = ++tol;
tree[p].len = tree[p].pre = tree[p].suf = tree[p].mx = r - l + ;
if (l == r) return;
int mid = l + r >> ;
build(tree[p].lp, l, mid);
build(tree[p].rp, mid + , r);
}
void update(int &p, int q, int l, int r, int pos) {
tree[p = ++tol] = tree[q];
if (l == r) {
tree[p].pre = tree[p].suf = tree[p].mx = ;
return;
}
int mid = l + r >> ;
if (pos <= mid) update(tree[p].lp, tree[q].lp, l, mid, pos);
else update(tree[p].rp, tree[q].rp, mid + , r, pos);
pushup(p);
}
pair<int, int> query(int p, int l, int r, int x, int y) {
if (x <= l && y >= r) {
ans = max(ans, tree[p].mx);
return pair<int, int>(tree[p].pre, tree[p].suf);
}
int mid = l + r >> ;
pair<int, int> L(, ), R(, );
if (x <= mid) L = query(tree[p].lp, l, mid, x, y);
if (y > mid) R = query(tree[p].rp, mid + , r, x, y);
ans = max(ans, L.second + R.first);
return pair<int, int>(L.first + (L.first == tree[tree[p].lp].len ? R.first : ),
R.second + (R.second == tree[tree[p].rp].len ? L.second : ));
}
} seg; int main() {
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%d", &a[i]), h[i] = a[i];
sort(h + , h + + n);
int cnt = unique(h + , h + + n) - h - ;
for (int i = ; i <= n; i++) {
int pos = lower_bound(h + , h + + cnt, a[i]) - h;
G[pos].push_back(i);
}
seg.build(root[], , n);
for (int i = ; i <= cnt; i++) {
root[i] = root[i - ];
for (int x: G[i - ]) {
seg.update(root[i], root[i], , n, x);
}
}
int q;
scanf("%d", &q);
while (q--) {
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
int res = ;
int l = , r = cnt;
while (l <= r) {
int mid = (l + r + ) >> ;
ans = ;
seg.query(root[mid], , n, x, y);
if (ans >= w) l = mid + , res = mid;
else r = mid - ;
}
printf("%d\n", h[res]);
}
return ;
}
Codeforces 484 E. Sign on Fence的更多相关文章
- CF&&CC百套计划4 Codeforces Round #276 (Div. 1) E. Sign on Fence
http://codeforces.com/contest/484/problem/E 题意: 给出n个数,查询最大的在区间[l,r]内,长为w的子区间的最小值 第i棵线段树表示>=i的数 维护 ...
- Codeforces 484E Sign on Fence(是持久的段树+二分法)
题目链接:Codeforces 484E Sign on Fence 题目大意:给定给一个序列,每一个位置有一个值,表示高度,如今有若干查询,每次查询l,r,w,表示在区间l,r中, 连续最长长度大于 ...
- Codeforces Round #276 (Div. 1) E. Sign on Fence 二分+主席树
E. Sign on Fence Bizon the Champion has recently finished painting his wood fence. The fence consi ...
- AC日记——Sign on Fence Codeforces 484e
E. Sign on Fence time limit per test 4 seconds memory limit per test 256 megabytes input standard in ...
- CF 484E - Sign on Fence
E. Sign on Fence time limit per test 4 seconds memory limit per test 256 megabytes input standard in ...
- 【CF484E】Sign on Fence(主席树)
[CF484E]Sign on Fence(主席树) 题面 懒得贴CF了,你们自己都找得到 洛谷 题解 这不就是[TJOI&HEOI 排序]那题的套路吗... 二分一个答案,把大于答案的都变成 ...
- CF484E Sign on Fence && [国家集训队]middle
CF484E Sign on Fence #include<bits/stdc++.h> #define RG register #define IL inline #define _ 1 ...
- Codeforces Round #276 (Div. 1) E. Sign on Fence (二分答案 主席树 区间合并)
链接:http://codeforces.com/contest/484/problem/E 题意: 给你n个数的,每个数代表高度: 再给出m个询问,每次询问[l,r]区间内连续w个数的最大的最小值: ...
- Sign on Fence CodeForces - 484E
http://codeforces.com/problemset/problem/484/E 题意: 给定一个长度为n的数列,有m次询问,询问形如l r k 要你在区间[l,r]内选一个长度为k的区间 ...
随机推荐
- Ansible13:Playbook循环语句
目录 循环语句 简介 loop关键字说明 在循环语句中注册变量 旧循环语句 1. with_items 2. with_nested 3. with_dict 4. with_fileglob 5. ...
- Linux下查看.so和可执行文件是否debug编译
如何判断一个.so是否是debug编译的? 如果用此方法:用file来查看一个.so, 根据是否包含”not stripped”来判断该.so是否是debug编译的.然而stripped/not st ...
- Golang 调用 C/C++,例子式教程
大部分人学习或者使用某样东西,喜欢在直观上看到动手后的结果,才会有继续下去的兴趣. 前言: Golang 调用 C/C++ 的教程网上很多,就我目前所看到的,个人见解就是比较乱,坑也很多.希望本文能在 ...
- 《MySQL实战45讲》学习笔记1——MySQL的基础架构
在<极客时间>订阅了<MySQL实战45讲>专栏,总觉得看完和没看一样
- 2019 百合佳缘java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.百合佳缘等公司offer,岗位是Java后端开发,因为发展原因最终选择去了百合佳缘,入职一年时间了,也成为了面 ...
- django配置文件
1.BASSE_DIR BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 当前工程的根目录,Django会依 ...
- jQuery基础学习
一.简介 jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨是“Write ...
- Java 之 可变字符序列:字符串缓冲区(StringBuilder 与 StringBuffer)
一.字符串拼接问题 由于 String 类的对象内容不可改变,所以每当进行字符串拼接时,总是会在内存中创建一个新的对象. Demo: public class StringDemo { public ...
- 安全SECUERITY单词SECUERITY证券
中文名:证券业 外文名:secuerity 含义:指从事证券发行和交易服务 性质:证券市场的基本组成要素 组成:证券交易所.证券公司 目录 1 证券评级 2 证券定义 ? 涵义 ? 内容 ? 分类 ? ...
- 5.2 odex文件
odex是OptimizedDEX的缩写,是优化过的dex文件 odex两种存在方式: 1. 从apk程序中提取,和apk文件放在一起,后缀 odex,此类文件多是AndroidRom系统文件 2. ...