Spark API--Spark 分区
一、分区的概念
分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。
二、为什么要进行分区
数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能。mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件, 从而减少网络传输,但是增加了cpu的计算负载。
Spark里面io也是不可避免的,但是网络传输spark里面进行了优化:
Spark把rdd进行分区(分片),放在集群上并行计算。同一个rdd分片100个,10个节点,平均一个节点10个分区,当进行sum型的计算的时候,先进行每个分区的sum,然后把sum值shuffle传输到主程序进行全局sum,所以进行sum型计算对网络传输非常小。但对于进行join型的计算的时候,需要把数据本身进行shuffle,网络开销很大。
spark是如何优化这个问题的呢?
Spark把key-value rdd通过key的hashcode进行分区,而且保证相同的key存储在同一个节点上,这样对改rdd进行key聚合时,就不需要shuffle过程,我们进行mapreduce计算的时候为什么要进行shuffle?,就是说mapreduce里面网络传输主要在shuffle阶段,shuffle的根本原因是相同的key存在不同的节点上,按key进行聚合的时候不得不进行shuffle。shuffle是非常影响网络的,它要把所有的数据混在一起走网络,然后它才能把相同的key走到一起。要进行shuffle是存储决定的。
Spark从这个教训中得到启发,spark会把key进行分区,也就是key的hashcode进行分区,相同的key,hashcode肯定是一样的,所以它进行分区的时候100t的数据分成10分,每部分10个t,它能确保相同的key肯定在一个分区里面,而且它能保证存储的时候相同的key能够存在同一个节点上。比如一个rdd分成了100份,集群有10个节点,所以每个节点存10份,每一分称为每个分区,spark能保证相同的key存在同一个节点上,实际上相同的key存在同一个分区。
key的分布不均决定了有的分区大有的分区小。没法分区保证完全相等,但它会保证在一个接近的范围。所以mapreduce里面做的某些工作里边,spark就不需要shuffle了,spark解决网络传输这块的根本原理就是这个。
进行join的时候是两个表,不可能把两个表都分区好,通常情况下是把用的频繁的大表事先进行分区,小表进行关联它的时候小表进行shuffle过程。
大表不需要shuffle。
需要在工作节点间进行数据混洗的转换极大地受益于分区。这样的转换是 cogroup,groupWith,join,leftOuterJoin,rightOuterJoin,groupByKey,reduceByKey,combineByKey 和lookup。
三、Spark分区原则及方法
RDD分区的一个分区原则:尽可能是得分区的个数等于集群核心数目
无论是本地模式、Standalone模式、YARN模式或Mesos模式,我们都可以通过spark.default.parallelism来配置其默认分区个数,若没有设置该值,则根据不同的集群环境确定该值
3.1 本地模式
(1)默认方式
以下这种默认方式就一个分区
结果
(2)手动设置
设置了几个分区就是几个分区
结果
(3)跟local[n] 有关
n等于几默认就是几个分区
如果n=* 那么分区个数就等于cpu core的个数
结果
本机电脑查看cpu core,我的电脑--》右键管理--》设备管理器--》处理器
(4)参数控制
结果
3.2 YARN模式
进入defaultParallelism方法
继续进入defaultParallelism方法
这个一个trait,其实现类是(Ctrl+h)
进入TaskSchedulerImpl类找到defaultParallelism方法
继续进入defaultParallelism方法,又是一个trait,看其实现类
Ctrl+h看SchedulerBackend类的实现类
进入CoarseGrainedSchedulerBackend找到defaultParallelism
totalCoreCount.get()是所有executor使用的core总数,和2比较去较大值
如果正常的情况下,那你设置了多少就是多少
四、分区器
(1)如果是从HDFS里面读取出来的数据,不需要分区器。因为HDFS本来就分好区了。
分区数我们是可以控制的,但是没必要有分区器。
(2)非key-value RDD分区,没必要设置分区器
al testRDD = sc.textFile("C:\\Users\\Administrator\\IdeaProjects\\myspark\\src\\main\\hello.txt")
.flatMap(line => line.split(","))
.map(word => (word, 1)).partitionBy(new HashPartitioner(2))
没必要设置,但是非要设置也行。
(3)Key-value形式的时候,我们就有必要了。
HashPartitioner
val resultRDD = testRDD.reduceByKey(new HashPartitioner(2),(x:Int,y:Int) => x+ y)
//如果不设置默认也是HashPartitoiner,分区数跟spark.default.parallelism一样
println(resultRDD.partitioner)
println("resultRDD"+resultRDD.getNumPartitions)
RangePartitioner
val resultRDD = testRDD.reduceByKey((x:Int,y:Int) => x+ y)
val newresultRDD=resultRDD.partitionBy(new RangePartitioner[String,Int](3,resultRDD))
println(newresultRDD.partitioner)
println("newresultRDD"+newresultRDD.getNumPartitions)
注:按照范围进行分区的,如果是字符串,那么就按字典顺序的范围划分。如果是数字,就按数据自的范围划分。
自定义分区
需要实现2个方法
class MyPartitoiner(val numParts:Int) extends Partitioner{
override def numPartitions: Int = numParts
override def getPartition(key: Any): Int = {
val domain = new URL(key.toString).getHost
val code = (domain.hashCode % numParts)
if (code < 0) {
code + numParts
} else {
code
}
}
} object DomainNamePartitioner {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("word count").setMaster("local") val sc = new SparkContext(conf) val urlRDD = sc.makeRDD(Seq(("http://baidu.com/test", 2),
("http://baidu.com/index", 2), ("http://ali.com", 3), ("http://baidu.com/tmmmm", 4),
("http://baidu.com/test", 4)))
//Array[Array[(String, Int)]]
// = Array(Array(),
// Array((http://baidu.com/index,2), (http://baidu.com/tmmmm,4),
// (http://baidu.com/test,4), (http://baidu.com/test,2), (http://ali.com,3)))
val hashPartitionedRDD = urlRDD.partitionBy(new HashPartitioner(2))
hashPartitionedRDD.glom().collect() //使用spark-shell --jar的方式将这个partitioner所在的jar包引进去,然后测试下面的代码
// spark-shell --master spark://master:7077 --jars spark-rdd-1.0-SNAPSHOT.jar
val partitionedRDD = urlRDD.partitionBy(new MyPartitoiner(2))
val array = partitionedRDD.glom().collect() }
}
Spark API--Spark 分区的更多相关文章
- spark api之一:Spark官方文档 - 中文翻译
转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initi ...
- Spark:将RDD[List[String,List[Person]]]中的List[Person]通过spark api保存为hdfs文件时一直出现not serializable task,没办法找到"spark自定义Kryo序列化输入输出API"
声明:本文转自<在Spark中自定义Kryo序列化输入输出API> 在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo seriali ...
- [Spark RDD_add_2] Spark RDD 分区补充内容
[Spark & Hadoop 的分区] Spark 的分区是切片的个数,每个 RDD 都有自己的分区数. Hadoop 的分区指的是 Reduce 的个数,是 Map 过程中对 Key 进行 ...
- [Dynamic Language] pyspark Python3.7环境设置 及py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe解决!
pyspark Python3.7环境设置 及py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spa ...
- 03、IDEA下Spark API编程
03.IDEA下Spark API编程 3.1 编程实现Word Count 3.1.1 创建Scala模块 3.1.2 添加maven支持,并引入spark依赖 <?xml version=& ...
- spark shuffle:分区原理及相关的疑问
一.分区原理 1.为什么要分区?(这个借用别人的一段话来阐述.) 为了减少网络传输,需要增加cpu计算负载.数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduc ...
- py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : java.lang.IllegalArgumentException: Unsupported class file major version 55
今天小编用Python编写Spark程序报了如下异常: py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apach ...
- 【转】科普Spark,Spark是什么,如何使用Spark
本博文是转自如下链接,为了方便自己查阅学习和他人交流.感谢原博主的提供! http://www.aboutyun.com/thread-6849-1-1.html http://www.aboutyu ...
- Spark记录-spark编程介绍
Spark核心编程 Spark 核心是整个项目的基础.它提供了分布式任务调度,调度和基本的 I/O 功能.Spark 使用一种称为RDD(弹性分布式数据集)一个专门的基础数据结构,是整个机器分区数据的 ...
- Spark记录-spark介绍
Apache Spark是一个集群计算设计的快速计算.它是建立在Hadoop MapReduce之上,它扩展了 MapReduce 模式,有效地使用更多类型的计算,其中包括交互式查询和流处理.这是一个 ...
随机推荐
- ai切片的完美解决方案
ai切片的完美解决方案1 背景拖到外面2 导出psd3 ps切片 背景夹层黑色就看清楚啦
- Cannot get a STRING value from a NUMERIC cell问题的解决办法
遇到以下错误的解决办法: 在cell加个setCellType()方法就可以了 cell.setCellType(CellType.STRING);
- springboot结合日志门面SLF4j和日志实现Logback的使用
一.此处主要介绍在springboot工程下如何使用 logback + slf4j 进行日志记录. logback主要包含三个组成部分:Loggers(日志记录器).Appenders(输出目的在 ...
- SSM整合学习 一
一:新建maven项目 File--New Project选择maven项目下的maven-archetype-webapp,输入GroupId.Artifactld,选择maven信息,新建mave ...
- PB 选择继承父类的注意事项
1.父类的datewindow 的祖先类最好不是n_dw_single ,最好是n_dw_grid,n_dw_single 的标题行没有阴影.排序,没有行聚焦等功能(非常初始的).n_dw_grid ...
- Springcloud的版本依赖问题(最全,包含springCloud所有的版本)
版权声明:本文为博主原创文章,遵循CC 4.0 BY版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_42105629/article/detai ...
- HUAWEI,H3C 三层交换机 常用命令
<HUAWEI> display ip interface brief,命令全局模式下可以查看所有端口下的ip地址及物理状态display this interface,命令用来显示当前接 ...
- Java GC的工作原理详解
JVM学习笔记之JVM内存管理和JVM垃圾回收的概念,JVM内存结构由堆.栈.本地方法栈.方法区等部分组成,另外JVM分别对新生代下载地址 和旧生代采用不同的垃圾回收机制. 首先来看一下JVM内存结 ...
- 拓展 - Webrtc 的回声抵消(aec、aecm)算法简介
webrtc 的回声抵消(aec.aecm)算法简介 原文链接:丢失.不好意思 webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS( ...
- Linux 命令:ls
1. ls命令: list的缩写,查看目录中的文件 ls [选项] [目录名] dos 命令: dir 2. 常用参数: -a, –all 列出目录下的所有文件,包括以 . 开头的隐含文件 -A 同- ...