[ CTSC 2007 / BZOJ 2151 ] Backup / 种树
\(\\\)
\(Description\)
给出一个数轴上\(N\)个点的坐标\(A_i\),选择\(K\)个点对,使得这\(K\)个点对每个点对的距离之和尽可能小。
- \(N\in [0,10^5]\),\(K\in [0,\frac{N}{2}]\),\(A_i\in [0,10^9]\)
\(\\\)
\(Solution\)
- 排序,求出相邻两两间距\(D_i\),问题转化为选\(K\)个互不相邻的间距。
- 将所有的间距放到一个小根堆中,每次取堆顶加入答案。如果选择了\(D_i\),则在堆中删去\(D_i,D_{i-1},D_{i+1}\),并将\(D_{i-1}+D_{i+1}-D_i\)加入堆中,去执行选\(K-1\)个值得子问题。
- 这样做法的合理性在于,如果每次选则的是原来的\(D_i\),那么就是直接加入这个答案,如果选择的是某次操作后的\(D_{i-1}+D_{i+1}-D_i\),那么代表\(D_i\)在此前一定加入过答案,此时答案里累加上这个数代表,从答案中去掉原来选择的\(D_i\),加入\(D_i\)两侧的数,同样会使得选则的间距\(+1\)。
- 注意,在合并边界元素时,如果再次进行反转操作并不会使选中的段数增加,所以如果边界被合并了一次重置该位置数字时应设为正无穷。
- 可以发现几次操作以后前驱后继就很难寻找了,所以可以采用链表来维护这个数列,同时在插入堆中时绑定链表节点的编号,此时操作即改为合并三个链表元素,标记堆中三个元素不合法,执行\(K\)次即可选出合法的\(K\)段间距,即\(K\)个点对。
\(\\\)
\(Code\)
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define gc getchar
#define N 100010
#define inf 1000000000
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
bool vis[N];
int n,m,ans,pre[N],nxt[N],num[N];
priority_queue<pair<int,int> > q;
int main(){
n=rd(); m=rd();
for(R int i=2,lp=rd(),now;i<=n;++i){
pre[i]=i-1; nxt[i]=i+1;
num[i]=(now=rd())-lp; lp=now;
}
pre[2]=nxt[n]=0;
for(R int i=2;i<=n;++i) q.push(make_pair(-num[i],i));
while(m--){
while(vis[q.top().second]) q.pop();
int now=q.top().second;
int pr=pre[now],nx=nxt[now];
q.pop(); ans+=num[now];
pre[nxt[now]=nxt[nx]]=now;
nxt[pre[now]=pre[pr]]=now;
num[now]=(pr&&nx)?min(inf,num[pr]+num[nx]-num[now]):inf;
vis[pr]=vis[nx]=1; q.push(make_pair(-num[now],now));
}
printf("%d\n",ans);
return 0;
}
\(\\\)
种树就是把链表循环起来选最大,循环的关系不需要考虑边界的特判比上面的还水
\(\\\)
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define gc getchar
#define N 200010
#define inf 1000000000ll
using namespace std;
typedef long long ll;
inline ll rd(){
ll x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
bool vis[N];
ll n,m,ans,pre[N],nxt[N],num[N];
priority_queue<pair<int,int> > q;
int main(){
n=rd(); m=rd();
if(n<m*2){puts("Error!");return 0;}
for(R ll i=1;i<=n;++i){
pre[i]=i-1; nxt[i]=i+1;
num[i]=rd();
}
pre[1]=n; nxt[n]=1;
for(R ll i=1;i<=n;++i) q.push(make_pair(num[i],i));
while(m--){
while(vis[q.top().second]) q.pop();
ll now=q.top().second;
ll pr=pre[now],nx=nxt[now];
q.pop(); ans+=num[now];
pre[nxt[now]=nxt[nx]]=now;
nxt[pre[now]=pre[pr]]=now;
num[now]=min(inf,num[pr]+num[nx]-num[now]);
vis[pr]=vis[nx]=1; q.push(make_pair(num[now],now));
}
printf("%lld\n",ans);
return 0;
}
[ CTSC 2007 / BZOJ 2151 ] Backup / 种树的更多相关文章
- [bzoj 2151]种树(贪心)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2151 分析:原型是bzoj 1150(CTSC 2007) 首先DP无法下手,想到贪心.想到贪 ...
- Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化
https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...
- 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...
- P3620 [APIO/CTSC 2007]数据备份
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...
- 【BZOJ 2151】 2151: 种树 (贪心+堆+双向链表)
2151: 种树 Description A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树.园林部门得到指令后,初步规划出n个种树的位置,顺时针编号1到n.并且每个 ...
- 【刷题】BZOJ 2151 种树
Description A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树.园林部门得到指令后,初步规划出n个种树的位置,顺时针编号1到n.并且每个位置都有一个美观度 ...
- BZOJ 2151 种树(循环链表)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2151 [题目大意] 在一个长度为n的数字环中挑选m个不相邻的数字使得其和最大 [题解] ...
- bzoj 2151 种树——贪心+后悔
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2151 似乎是半年+前讲过的.(然而看到的时候却不会了) 考虑贪心,限制就是不能选两边的.如果 ...
随机推荐
- COJ 1351 Tree Counting 动态规划
题目大意是: 给定一个n,k,表示树上共有n个节点,每个节点最多有k个叶子,问一共多少种摆法,答案对1000000007取模 这里定义一个dp[i]表示 i 个节点对应有多少种方法 f[i][j] 表 ...
- 【ZJOI2017 Round2练习&BZOJ4827】D1T3 gift(FFT)
题意: 思路:可以看出题目所要最小化的是这样一个形式: 拆出每一项之后发现会变化的项只有sigma a[i]*b[i+t]与c^2,c*(a[i]-b[i]) c可以在外层枚举,剩下的只有sigma ...
- nyoj_600_花儿朵朵_201404162000
花儿朵朵 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 春天到了,花儿朵朵盛开,hrdv是一座大花园的主人,在他的花园里种着许多种鲜花,每当这个时候,就会有一大群游 ...
- Ubuntu查看系统版本的方法
1. less /etc/issue 2. less /proc/version 3. uname -a 4. lsb_release -a
- NetCore实现全局异常捕捉统一处理
做net项目时候,在Global.asax文件中可以通过Application_Error方法全局捕获异常并处理后统一跳转到自定义的错误页面. 下面是我个人在NetCore项目中实现全局捕获异常并统一 ...
- C++ - 模板函数须要类型转换时使用友元(friend)模板函数
模板函数须要类型转换时使用友元(friend)模板函数 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24357301 非模板函数 ...
- Solidworks在哪里找到内六角螺钉 内六角螺栓保准件
GB-screws-凹头螺钉-出来了
- URAL 2031. Overturned Numbers (枚举)
2031. Overturned Numbers Time limit: 1.0 second Memory limit: 64 MB Little Pierre was surfing the In ...
- 数据结构之中序遍历转兴许遍历(JAVA实现)(二)
算法流程: 主要分为四步: 1.当前字符为数字或者字母,则直接输出 2.当前字符为).则在栈中匹配输出.一直匹配到),则停止输出(就是将)及其顶上的元素所有弹出来输出) 3.当前字符为操作符.则比較当 ...
- hdu 5078 2014鞍山现场赛 水题
http://acm.hdu.edu.cn/showproblem.php?pid=5078 现场最水的一道题 连排序都不用,由于说了ti<ti+1 //#pragma comment(link ...