UVA - 11374 Airport Express (Dijkstra模板+枚举)
Description
Problem D: Airport Express |
In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the
Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs.
Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.
Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.
Input
The input consists of several test cases. Consecutive cases are separated by a blank line.
The first line of each case contains 3 integers, namely N,
S and E (2 ≤ N ≤ 500, 1 ≤
S, E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively.
There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next
M lines give the information of the routes of the Economy-Xpress. Each consists of three integers
X, Y and Z (X,
Y ≤ N, 1 ≤ Z ≤ 100). This means
X and Y are connected and it takes
Z minutes to travel between these two stations.
The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next
K lines contain the information of the Commercial-Xpress in the same format as that of the Economy-Xpress.
All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.
Output
For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "Ticket Not Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.
Sample Input
4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3
Sample Output
1 2 4
2
5
题意:去机场有两种方法,一个是经济线一个是商业线。线路、速度、价格都不同样,你有一张商业票。能够坐一站商业线。而其它时候仅仅能做经济线,换乘时间不计算,你的任务是找一条去机场最快的线路。
思路:枚举商业线的起点和终点,然后分别从我们的起点和终点最短路。然后找出最优解就能够了
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 505;
const int INF = 0x3f3f3f3f; struct Edge {
int from, to, dist;
}; struct HeapNode {
int d, u;
bool operator< (const HeapNode rhs) const {
return d > rhs.d;
}
}; struct Dijkstra {
int n, m; // 点数和边数
vector<Edge> edges; //边列表
vector<int> G[MAXN]; // 每一个点出发的边编号(0開始)
bool done[MAXN]; // 是否已标记
int d[MAXN]; //s 到各个点的距离
int p[MAXN]; //最短路中上一个点,也能够是上一条边 void init(int n) {
this->n = n;
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m-1);
} void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 0; i < n; i++)
d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode){0, s});
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = true;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = e.from;
Q.push((HeapNode){d[e.to], e.to});
}
}
}
} void getPath(vector<int> &path, int s, int e) {
int cur = e;
while (1) {
path.push_back(cur);
if (cur == s)
return ;
cur = p[cur];
}
}
};
int n, m, k, s, e;
int x, y, z;
vector<int> path; int main() {
int first = 1;
while (scanf("%d%d%d", &n, &s, &e) != EOF) {
if (first)
first = 0;
else printf("\n");
s--, e--;
Dijkstra ans[2];
ans[0].init(n);
ans[1].init(n);
scanf("%d", &m);
while (m--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
ans[0].AddEdge(x, y, z);
ans[0].AddEdge(y, x, z);
ans[1].AddEdge(x, y, z);
ans[1].AddEdge(y, x, z);
}
ans[0].dijkstra(s);
ans[1].dijkstra(e);
scanf("%d", &k);
path.clear();
int Min = ans[0].d[e];
int flagx = -1, flagy = -1;
while (k--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
if (Min > ans[0].d[x] + z + ans[1].d[y]) {
Min = ans[0].d[x] + z + ans[1].d[y];
flagx = x, flagy = y;
}
if (Min > ans[1].d[x] + z + ans[0].d[y]) {
Min = ans[1].d[x] + z + ans[0].d[y];
flagx = y, flagy = x;
}
}
if (flagx == -1) {
ans[0].getPath(path, s, e);
reverse(path.begin(), path.end());
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("Ticket Not Used\n");
printf("%d\n", Min);
}
else {
ans[0].getPath(path, s, flagx);
reverse(path.begin(), path.end());
ans[1].getPath(path, e, flagy);
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("%d\n", flagx+1);
printf("%d\n", Min);
}
}
return 0;
}
UVA - 11374 Airport Express (Dijkstra模板+枚举)的更多相关文章
- UVa 11374 - Airport Express ( dijkstra预处理 )
起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b); ans = min( d1[a] + cost(a, b ...
- UVA - 11374 - Airport Express(堆优化Dijkstra)
Problem UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...
- UVA 11374 Airport Express SPFA||dijkstra
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...
- UVA 11374 Airport Express(枚举+最短路)
枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...
- UVA 11374 Airport Express (最短路)
题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...
- UVA 11374 Airport Express(最短路)
最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...
- uva 11374 最短路+记录路径 dijkstra最短路模板
UVA - 11374 Airport Express Time Limit:1000MS Memory Limit:Unknown 64bit IO Format:%lld & %l ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
随机推荐
- Java基础(十三)--深拷贝和浅拷贝
在上篇文章:Java基础(十二)--clone()方法,我们简单介绍了clone()的使用 clone()对于基本数据类型的拷贝是完全没问题的,但是如果是引用数据类型呢? @Data @NoArgsC ...
- 阿里云报错Redirecting to /bin/systemctl restart sshd.service
转:http://blog.csdn.net/caijunfen/article/details/70599138 云服务器 ECS Linux CentOS 7 下重启服务不再通过 service ...
- Bullet:MySQL增强半同步参数rpl_semi_sync_master_wait_point值AFTER_SYNC和AFTER_COMMIT的对比实验
MySQL 5.7.22启用增强半同步复制 MySQL对该参数值的描述 Semisync can wait for slave ACKs at one of two points, AFTER_SYN ...
- HTML5页面直接调用百度地图API,获取当前位置,直接导航目的地
<!DOCTYPE html> <html lang="zh-cmn-Hans"> <meta charset="UTF-8"&g ...
- [NOI2005]聪聪与可可
题目大意:有小a和小b,其中一个人到处乱走,每次走一步:另一个人抄近路逼近,每次1-2步.求期望路程. 整解:跑1000遍最短路/bfs,求两两距离,然后找从x逼近y第一步去哪,最后期望dp收场. d ...
- ELK6.3.2+filebeat部署过程
ELK安装部署 elk作为公司的日志收集检索的方案的首选,是必要的工具,下面介绍一下elk的安装部署方法,以及一些报错的解决方法:(使用的是ubuntu16.04,jdk使用1.8,ELK的版本为6. ...
- PHP导出超大的CSV格式的Excel表方案
场景和痛点 说明 我们工作场景都常会导出相关的excel数据,有时候需要大量的数据,10W,100W都有可能 我们现有方案都是直接利用phpexcel等类库来操作,phpexcel的load加载或是写 ...
- Python之粘包
Python之粘包 让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig) 注意注意注意: res=subprocess.Popen(cmd.deco ...
- SpringMVC Controller的返回类型
Controller的三种返回类型中 ModelAndView类型 带数据带跳转页面 String 跳转页面不带数据 void 通常是ajax格式请求时使用 1返回ModelAndView contr ...
- Microsoft Azure 资料整理
鉴于Microsoft Azure的技术迭代更新相当快,所以推荐大家还是以官方文档为准. 以Global Azure 的为主,Mooncake版本自行删减 首先推荐Azure for MSDN htt ...