uoj#34
模板
#include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
const int N = ;
int n, m, L, x;
int r[N];
complex<double> a[N], b[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &x), a[i] = x;
for(int i = ; i <= m; ++i) scanf("%d", &x), b[i] = x;
m = n + m; for(n = ; n <= m; n <<= ) ++L;
for(int i = ; i < n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = ; i <= m; ++i) printf("%d ", (int)(a[i].real() / n + 0.5));
return ;
}
uoj#34的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【UOJ #34】多项式乘法
http://uoj.ac/problem/34 看了好长时间的FFT和NTT啊qwq在原根那块磨蹭了好久_(:з」∠)_ 首先设答案多项式的长度拓展到2的幂次后为n,我们只要求出一个g(不是原根)满 ...
- UOJ#34 FFT模板题
写完上一道题才意识到自己没有在博客里丢过FFT的模板-- 这道题就是裸的多项式乘法,可以FFT,可以NTT,也可以用Karasuba(好像有人这么写没有T),也可以各种其他分治乘法乱搞-- 所以我就直 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【UOJ 34】 #34. 多项式乘法 (FFT)
[分析] 这个只是用来放模板..[其实我还没完全懂的.. 迭代 代替 递归: #include<cstdio> #include<cstdlib> #include<cs ...
- 【UOJ 34】 多项式乘法 (FFT)
[题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
随机推荐
- Spring Boot 与任务
一.任务 1.异步任务 package com.yunche.task.service; import org.springframework.stereotype.Service; /** * @C ...
- java.lang.NoSuchFieldError: DEFAULT_INCOMPATIBLE_IMPROVEMENTS
解决方案: 启动类上加@EnableAutoConfiguration(exclude = { FreeMarkerAutoConfiguration.class }) 或者在配置文件添加spring ...
- [Algorithm] 3. Digit Counts
Description Count the number of k's between 0 and n. k can be 0 - 9. Example if n = 12, k = 1 in [0, ...
- C++字符串处理函数总结
1.基础函数输入输出:cin,cout,getchar,gets,putchar,puts,printf,scanf格式化:sprintf,sprintf_s,wsprintf,wsprintf_s, ...
- <SpringMvc>入门七 拦截器
什么是拦截器 1.SpringMVC框架中的拦截器用于 对处理器 进行预处理和后处理的技术. 2.可以定义拦截器链,按照顺序执行. 3.拦截器和过滤器功能类似,区别在 拦截器 过滤器 过滤器是Serv ...
- PHP 生成器Generators的入门理解和学习
什么是生成器Generators 生成器允许你在 foreach 代码块中写代码来迭代一组数据而不需要在内存中创建一个数组, 那会使你的内存达到上限,或者会占据可观的处理时间.相反,你可以写一个生成器 ...
- Python3.0科学计算学习之类
类: Python中的类是一个抽象的概念,甚至比函数还要抽象.可以把它简单的看作是数据以及由存取.操作这些数据的方法所组成的一个集合.类是Python的核心概念,是面向对象编程的基础. 类有如下的优点 ...
- 初学hash
hash定义: Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种 ...
- 【02】Node.js 安装配置(OK)
[02] Node.js 安装配置 本章节我们将向大家介绍在window和Linux上安装Node.js的方法. Node.js安装包及源码下载地址为:http://www.nodejs.org/do ...
- UVA 12697 Minimal Subarray Length
Minimal Subarray Length Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVA ...