uoj#34
模板
#include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
const int N = ;
int n, m, L, x;
int r[N];
complex<double> a[N], b[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &x), a[i] = x;
for(int i = ; i <= m; ++i) scanf("%d", &x), b[i] = x;
m = n + m; for(n = ; n <= m; n <<= ) ++L;
for(int i = ; i < n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = ; i <= m; ++i) printf("%d ", (int)(a[i].real() / n + 0.5));
return ;
}
uoj#34的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【UOJ #34】多项式乘法
http://uoj.ac/problem/34 看了好长时间的FFT和NTT啊qwq在原根那块磨蹭了好久_(:з」∠)_ 首先设答案多项式的长度拓展到2的幂次后为n,我们只要求出一个g(不是原根)满 ...
- UOJ#34 FFT模板题
写完上一道题才意识到自己没有在博客里丢过FFT的模板-- 这道题就是裸的多项式乘法,可以FFT,可以NTT,也可以用Karasuba(好像有人这么写没有T),也可以各种其他分治乘法乱搞-- 所以我就直 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【UOJ 34】 #34. 多项式乘法 (FFT)
[分析] 这个只是用来放模板..[其实我还没完全懂的.. 迭代 代替 递归: #include<cstdio> #include<cstdlib> #include<cs ...
- 【UOJ 34】 多项式乘法 (FFT)
[题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
随机推荐
- HTML5大数据可视化效果(一)彩虹爆炸图
前言 25年过去了,Brooks博士著名的“没有银弹”的论断依旧没有被打破.HTML5也是一样.但这并不妨碍HTML5是一个越来越有威力的“炸蛋”:发展迅速.势不可挡.随着HTML5技术的普及,用HT ...
- Android开发技巧一--weight属性实现视图的居中(半)显示
面试时,一位面试官问到:“如果我想讲按钮居中显示,并且占据其父视图宽度的一半,应该怎么做到呢?”即实现这种效果: 我们使用weightSum属性和layout_weight属性实现这一要求: < ...
- 扒一扒PROMISE的原理,大家不要怕!
在前端的日常工作中,回调函数(callback)应该是见怪不怪了,但是当回调函数遇上了异步(async),这就令人发指了.那么异步是什么意思呢,简单地说就是不等你执行完,就先执行下方的代码了. 举个
- Iframe用法精析
String.prototype.match()中正则表达式的g标识存在的时候,函数不会捕获子表达式中的内容,不存在的时候可以. RegExp.prototype.exec()中g的存在只会影响,Re ...
- MyBatis 的基本要素—核心对象
MyBatis 三个基本要素 ➢ 核心接口和类 ➢ MyBatis 核心配置文件(mybatis-config.xml) ➢ SQL 映射文件(mapper.xml) MyBatis 核心接口和类 ...
- vticker.js--垂直滚动插件
一.使用要求 列表必须是ul>li的格式 html代码 <div class=" myvticker'"> <ul> <li>1.新闻标题 ...
- Pygame游戏开发入门(1)-开发框架
pygame库的安装 pip install pygame pygame最小开发框架 #Pygame Hello World Game import pygame,sys #引入pygame和sys( ...
- 分金币 (UVA 11300)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33899 思路:推公式,发现可以转化为求给定n个数,求到所有点距离之和最小的点 ...
- 使用lombok提高编码效率-----不用写get set
使用lombok提高编码效率-----不用写get set https://blog.csdn.net/v2sking/article/details/73431364
- MVC系统学习2—MVC路由
在MVC下不是通过对物理文件的映射来实行访问的,而是通过定义后的路由Url来实现访问的.在前一篇讲到我们是在全局文件下进行路由配置. routes.MapRoute( & ...