[ HDOJ 3826 ] Squarefree number
\(\\\)
\(Description\)
\(T\)组数据,每次给出一个正整数 \(N\) ,判断其是否能被任意一个完全平方数整除。
- \(T\le 20,N\le 10^{18}\)
\(\\\)
\(Solution\)
比较巧妙。
考虑一个数能被完全平方数整除,当且仅当对其分解质因数以后,至少有一个质数的指数\(\ge 2\)。
借用试除法分解质因数的思路,大于\(\sqrt N\)的质因子至多只有一个。那么,大于 \(\sqrt[3] N\) 的质因数的平方整除 \(N\) 的个数至多也只有一个,而且指数至多为 \(2\) ,因为指数再大或者再乘上一个等数量级的完全平方数都会超过 \(10^{18}\) 的数据范围。
然后就筛出 \(\sqrt[3] {10^{18}}=10^6\) 范围内的质数,然后将 \(N\) 中\([0,10^6]\) 范围内的质因子去掉。在这一过程中一旦出现指数大于 \(2\) 的情况就直接 \(GG\) 。然后剩下的如果是大于 \(1\) 的话就 \(check\) 一下是不是完全平方数就好了。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1000010
#define R register
#define gc getchar
using namespace std;
typedef long long ll;
inline ll rd(){
ll x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
bool vis[N];
ll prm[N];
inline void init(){
for(R ll i=2;i<N;++i){
if(!vis[i]) prm[++prm[0]]=i;
for(R ll j=1,k;j<=prm[0]&&(k=i*prm[j])<N;++j){
vis[k]=1; if(i%prm[j]==0) break;
}
}
}
inline bool check(ll x){
for(R ll i=1;i<=prm[0];++i)
if(x%prm[i]==0){
x/=prm[i];
if(x%prm[i]==0) return 0;
if(x==1) return 1;
}
ll tmp=(ll)sqrt((double)x);
return (tmp*tmp!=x);
}
int main(){
init();
ll t=rd();
for(R ll i=1;i<=t;++i){
printf("Case %lld: ",i);
puts(check(rd())?"Yes":"No");
}
return 0;
}
[ HDOJ 3826 ] Squarefree number的更多相关文章
- HDU 3826 Squarefree number ( 唯一分解定理 )
题目链接 题意 : 给出一个数.问其能不能被任何一个平方数整除.如果可以则输出 No 即不是 Square-free Number .否则输出 Yes 分析 : 首先 N 有 1e18 那么大.不能暴 ...
- 水题 HDOJ 4727 The Number Off of FFF
题目传送门 /* 水题:判断前后的差值是否为1,b[i]记录差值,若没有找到,则是第一个出错 */ #include <cstdio> #include <iostream> ...
- 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )
题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...
- HDOJ 3709 Balanced Number
数位DP... Balanced Number Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java ...
- 如何运用同余定理求余数【hdoj 1212 Big Number【大数求余数】】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDOJ 1018 Big Number(大数位数公式)
Problem Description In many applications very large integers numbers are required. Some of these app ...
- HDOJ 1266 Reverse Number(数字反向输出题)
Problem Description Welcome to 2006'4 computer college programming contest! Specially, I give my bes ...
- HDOJ 4937 Lucky Number
当进制转换后所剩下的为数较少时(2位.3位),相应的base都比較大.能够用数学的方法计算出来. 预处理掉转换后位数为3位后,base就小于n的3次方了,能够暴力计算. . .. Lucky Numb ...
- HDOJ 2665 Kth number
静态区间第K小....划分树裸题 Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
随机推荐
- 如何查看sqlalchemy执行的原始sql语句?
SQLAlchemy打开SQL语句方法如下,echo=true将开启该功能: engine = create_engine("<db_rul>", echo=True) ...
- 关于C/S架构系统的安全监测
由于工作需求,需要对一大批C/S架构的系统进行测试,所以这几天一直在摸索怎么个套路法,踩过的坑就不发了,直接奔我个人的套路: C/S架构的系统,说最直白一点就是一堆.exe的系统,他们大部分没有web ...
- 剑指Offer —— BFS 宽度优先打印
https://www.nowcoder.net/practice/7fe2212963db4790b57431d9ed259701?tpId=13&tqId=11175&tPage= ...
- ubuntu下进行ssh
ubuntu下进行ssh 一, 介绍 SSH 为 Secure Shell 的缩写,由 IETF 的网络工作小组(Network Working Group)所制定:SSH 为建立 ...
- MapReduce获取分片数目
问题 MapReduce Application中mapper的数目和分片的数目是一样的,可是分片数目和什么有关呢? 默认情况下.分片和输入文件的分块数是相等的.也不全然相等,假设block size ...
- 011 router backup
Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(co ...
- 启用Mac系统读写NFTS磁盘
从Mac OSX 10.6系统开始苹果系统已经内置对NTFS写入功能,但苹果没有公开说明,而且在默认状态下是没有开启的.SL-NTFS是一款Mac上的小工具,它可以直接为你的Mac增加NTFS的写入权 ...
- [TypeScript] Overload a Function with TypeScript’s Overload Signatures
Some functions may have different return types depending on the types of the arguments with which th ...
- 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)
[POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS Memory Limit: 10 ...
- SEO 搜索引擎优化培训01
百度搜索风云榜:http://top.baidu.com/boards 页面上的因素:对搜索引擎而言