P3162 [CQOI2012]组装
退火大法好
我并不会正解于是只好打退火了……其他没啥好讲……只要对每一种颜色开一个vector,存一下所有这个颜色的位置,判定的时候可以去所有的颜色里二分找到前缀和后缀,把和当前点距离小的加入答案
然后就没有然后了……
//minamoto
#include<bits/stdc++.h>
#define IT vector<int>::iterator
#define R register
#define double long double
#define RD T*(rand()*2-RAND_MAX)
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(R int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e4+5;const double D=0.97,eps=1e-14;
vector<int>pos[N];double ans=1e10,pp,pr,T,res,best,pq,hp;int n,m,x,c,mn=1e5+5,mx=-1e5+5;
IT it;
double calc(R double x){
double r=0,p;
fp(i,1,n){
p=1e12;
it=lower_bound(pos[i].begin(),pos[i].end(),x);
if(it!=pos[i].end())p=min(p,(*it)-x);
if(it!=pos[i].begin())p=min(p,x-*(it-1));
r+=p*p;
}return r;
}
int main(){
srand(time(0));
// freopen("testdata.in","r",stdin);
n=read(),m=read();fp(i,1,m)x=read(),c=read(),pos[c].push_back(x),mn=min(mn,x),mx=max(mx,x);
pr=(1.0*mn+mx)/2,best=calc(pr);
while(clock()<CLOCKS_PER_SEC*0.5){
hp=pp=pr,ans=best;
for(T=100000;T>eps;T*=D){
pq=pp+RD,res=calc(pq);
if(best>res)best=res,pr=pq;
if(ans>res||exp((ans-res)/T)>(double)rand()/RAND_MAX)
ans=res,pp=pq;
}if(pr==hp)break;
}printf("%.4Lf\n",pr);
}
P3162 [CQOI2012]组装的更多相关文章
- luogu P3162 [CQOI2012]组装
传送门 mdzz,为什么这题有个贪心的标签啊qwq 首先考虑每一种车间,对于每相邻两个车间,在中点左边那么左边那个会贡献答案,在右边就右边那个更优 所以总共会有m-1个这样的分界中点,然后最多有m+1 ...
- [CQOI2012]组装 (贪心)
CQOI2012]组装 solution: 蒟蒻表示并不会模拟退火,所以用了差分数组加贪心吗.我们先来看题: 在数轴上的某个位置修建一个组装车间 到组装车间距离的平方的最小值. 1<=n< ...
- [CQOI2012]组装 贪心
[CQOI2012]组装 贪心好题. LG传送门 首先有一个必须要能推的式子:设第\(i\)种零件选的生产车间位置为\(x _ i\),组装车间位置为\(x\), 则总的花费为 \[f(x) = \s ...
- 【BZOJ2666】[cqoi2012]组装 贪心
[BZOJ2666][cqoi2012]组装 Description 数轴上有m个生产车间可以生产零件.一共有n种零件,编号为1~n.第i个车间的坐标为xi,生产第pi种零件(1<=pi< ...
- BZOJ 2666: [cqoi2012]组装
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2666 题意:n种零件,m个位置,每个位置有一种零件.求一个位置x,使得cost(1 ...
- Luogu3162 CQOI2012 组装 贪心
传送门 如果提供每一种零件的生产车间固定了,那么总时间\(t\)与组装车间的位置\(x\)的关系就是 \(t = \sum (x-a_i)^2 = nx^2-2\sum a_ix + \sum a_i ...
- 【题解】P3162CQOI2012组装
[题解][CQOI2012]组装 考虑化为代数的形式,序列\(\left[a_i \right]\)表示选取的\(i\)种类仓库的坐标. \(ans=\Sigma(a_i-x)^2,(*)\),展开: ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 建造者模式组装mybatis参数Example()
参考:github, https://github.com/liuxiaochen0625/MyBatis-Spring-Boot-master.git 从controller组装tk.mybat ...
随机推荐
- Copy List with Random Pointer (Hash表)
A linked list is given such that each node contains an additional random pointer which could point t ...
- java获得文件的最后修改时间
原文:http://www.open-open.com/code/view/1453190044980 java的File类的lastModified()方法可以返回文件的最后修改时间: String ...
- 【APUE】进程间通信之FIFO
FIFO也称为有名管道,它是一种文件类型,是半双工的.FIFO简单理解,就是它能把两个不相关的进程联系起来,FIFO就像一个公共通道,解决了不同进程之间的“代沟”.普通的无名管道只能让相关的进程进行沟 ...
- Edmonds 开花算法
Edmonds 开花算法 input: 图G,匹配M,未饱和点u idea: 查找从 u 開始的 M-交错路径.对每一个顶点记录父亲节点. 发现花朵.则收缩. 维护 S 和 T.S 表示沿着已经饱和的 ...
- centos7备份还原与grub2引导和rescue模式修改root密码
一.centos7备份1.su -2.cd /3.tar -zpPcvf backup.tgz --exclude=/sys --exclude=/mnt --exclude=/proc --excl ...
- 【机器学习具体解释】SVM解二分类,多分类,及后验概率输出
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vecto ...
- Linux—read
read:将信息读入一个或多个Shell变量 语法格式:read [-r] 变量名 选项: -r:原始读入,不做任何处理,不将结尾结尾处的反斜杠解释为续行字符 行为模式 ...
- SpringMVC+MyBatis+JMS+JTA(分布式事务)
SpringMVC+MyBatis 相信已经是如今企业开发中经常使用技术了. 由于一些需求,我们须要集成JMS(我使用的是ActiveMQ).大家应该都知道.MQ也能够觉得是一个数据源.数据也是数据源 ...
- 【小技能】如何检索苹果APP
有时候要临时在PC上查询一下苹果APP的信息,但是又没有安装itunes软件,那么你可以在必应里面使用类似如下的语句,例如来搜索“aboboo site:itunes.apple.com”,就可以搜索 ...
- bean的scope属性
1.singleton (默认属性) Spring将Bean放入Spring IOC容器的缓存池中,并将Bean引用返回给调用者,spring IOC继续对这些Bean进行后续的生命管理.Bean ...