当然是容斥啦。

用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可。

#include<iostream>
#include<cstdio>
using namespace std;
const long long N=100005;
long long c[10],T,d[10],s,f[N],ans;
long long read()
{
long long r=0;
char p=getchar();
while(p>'9'||p<'0')
p=getchar();
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r;
}
int main()
{
c[1]=read(),c[2]=read(),c[3]=read(),c[4]=read(),T=read();
f[0]=1;
for(long long j=1;j<=4;j++)
for(long long i=1;i<=N-5;i++)
if(i>=c[j])
f[i]+=f[i-c[j]];
while(T--)
{
ans=0ll;
d[1]=read(),d[2]=read(),d[3]=read(),d[4]=read(),s=read();
for(long long i=0;i<=15;i++)
{
long long t=1,sum=s;
for(long long j=1;j<=4;j++)
if(i&(1<<(j-1)))
{
t=-t;
sum-=(d[j]+1)*c[j];
}
if(sum>=0)
ans+=t*f[sum];
}
printf("%lld\n",ans);
}
return 0;
}

bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  3. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  4. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  5. BZOJ 1042: [HAOI2008]硬币购物 容斥原理_背包_好题

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值的东西.请问每次有多少种付款方法. 题解: 十分喜 ...

  6. bzoj 1042: [HAOI2008]硬币购物【dp】

    设f[i]为凑i元的方案数,这个随便dp一下就行了 然后处理限制,我们考虑用容斥,也就是4个超限-3个超限+2个超限-1个超限,这里用状压枚举一下,然后i硬币超限就当做选了d[i]+1个,在s里减去, ...

  7. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  8. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  9. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  10. 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...

随机推荐

  1. POJ 2484 A Funny Game【博弈】

    相比数据结构的题..感觉这种想啊想的题可爱多了~~~代码量还少.... 题目链接: http://poj.org/problem?id=2484 题意: 一圈n个硬币,两人轮流从中取一或两个硬币,(只 ...

  2. java的计时:毫秒、纳秒

    System.currentTimeMillis()获取毫秒值,但是其精度依赖操作系统 想实现较为精确的毫秒,可以采用 System.nanoTime()/1000000L System.nanoTi ...

  3. 【安卓笔记】抽屉式布局----DrawerLayout

    效果例如以下: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2hkamo=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  4. 分享codeigniter框架,在zend studio 环境下的代码提示

    一.到github下载相关文件 https://github.com/Stunt/Codeigniter-autocomplete 二.把文件放到application/config中 代码提示就出来 ...

  5. 微信小程序之 Index(仿淘宝分类入口)

    1.逻辑层 index.js //index.js //获取应用实例 const app = getApp() Page({ /** * 页面的初始数据 */ data: { menu: { imgU ...

  6. 【java项目实战】一步步教你使用MyEclipse搭建java Web项目开发环境(一)

    首先.在開始搭建MyEclipse的开发环境之前.还有三步工具的安装须要完毕,仅仅要在安装配置成功之后才干够进入以下的java Web项目开发环境的搭建. 1.安装工具 第一步,下载并安装JDK,到官 ...

  7. udhcp源码详解(五) 之DHCP包--options字段

    中间有很长一段时间没有更新udhcp源码详解的博客,主要是源码里的函数太多,不知道要不要一个一个讲下去,要知道讲DHCP的实现理论的话一篇博文也就可以大致的讲完,但实现的源码却要关心很多的问题,比如说 ...

  8. 命题作文:在一棵IPv4地址树中彻底理解IP路由表的各种查找过程

    这是一篇命题作文.近期一直想写点东西,但一直找不到题目.正好收到一封邮件,有人问我Linux路由表的布局问题以及路由缓存的问题,加之前些日子又帮人做了一个片上路由表,所以认为这是个好题目,索性花了多半 ...

  9. 大话设计模式C++实现-第14章-观察者模式

    一.UML图 关键词:Subject维护一个Observer列表.Subject运行Notify()时就运行列表中的每一个Observer的Update(). 二.概念 观察者模式:定义了一种一对多的 ...

  10. 2014/4/18 ① button与submit的区别 ②现象 : 数据库中其他值可以取到 有的却取不到 解决 看获取时“#”有无

    ①<input type="button" /> 这就是一个按钮.如果你不写javascript 的话,按下去什么也不会 发生. <input type=&quo ...