【题解】

  把询问离线,倒着加点,并查集维护连通性即可。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define LL long long
#define rg register
#define N 400010
using namespace std;
int n,m,k,cnt,tot,last[N],fa[N],q[N],ans[N];
bool v[N];
struct edge{int to,pre;}e[N<<];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main(){
n=read(); m=read();
for(rg int i=;i<=n;i++) fa[i]=i;
for(rg int i=;i<=m;i++){
int u=read()+,v=read()+;
e[++tot]=(edge){u,last[v]}; last[v]=tot;
e[++tot]=(edge){v,last[u]}; last[u]=tot;
}
k=read();
for(rg int i=;i<=k;i++) v[q[i]=read()+]=;
for(rg int now=;now<=n;now++)if(!v[now]){
cnt++;
for(rg int i=last[now],to;i;i=e[i].pre)if(!v[to=e[i].to]){
if(find(now)!=find(to)){
fa[find(now)]=find(to);
cnt--;
}
}
}
ans[k+]=cnt;
for(rg int j=k;j;j--){
int now=q[j];
cnt++; v[now]=;
for(rg int i=last[now],to;i;i=e[i].pre)if(!v[to=e[i].to]){
if(find(now)!=find(to)){
fa[find(now)]=find(to);
cnt--;
}
}
ans[j]=cnt;
}
for(rg int i=;i<=k+;i++) printf("%d\n",ans[i]);
return ;
}

洛谷 1197 [JSOI2008]星球大战的更多相关文章

  1. BZOJ1015或洛谷1197 [JSOI2008]星球大战

    BZOJ原题链接 洛谷原题链接 发现正着想毫无思路,所以我们可以考虑倒着思考,把摧毁变成建造. 这样很容易想到用并查集来维护连通块,问题也变的很简单了. 建原图,先遍历一遍所有边,若某条边的两端点未被 ...

  2. Bzoj1015/洛谷P1197 [JSOI2008]星球大战(并查集)

    题面 Bzoj 洛谷 题解 考虑离线做法,逆序处理,一个一个星球的加入.用并查集维护一下连通性就好了. 具体来说,先将被消灭的星球储存下来,先将没有被消灭的星球用并查集并在一起,这样做可以路径压缩,然 ...

  3. 洛谷P1197 [JSOI2008] 星球大战 [并查集]

    题目传送门 星球大战 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这 ...

  4. 洛谷P1197 [JSOI2008]星球大战

    题目 由于题目不要求强制在线,所以可以离线. 而离线的话就会带来许多便利,所以我们可以先处理出全部打击后的图,通过并查集来判断是否连通. 然后再从后往前枚举,得出答案 #include <bit ...

  5. 洛谷 P1197 [JSOI2008]星球大战

    题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧道 ...

  6. 洛谷 P1197 [JSOI2008]星球大战——并查集

    先上一波题目 https://www.luogu.org/problem/P1197 很明显删除的操作并不好处理 那么我们可以考虑把删边变成加边 只需要一波时间倒流就可以解决拉 储存删边顺序倒过来加边 ...

  7. 洛谷 P1198 [JSOI2008]最大数

    洛谷 P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. ...

  8. [Luogu 1197] JSOI2008 星球大战

    [Luogu 1197] JSOI2008 星球大战 我算是真的沦为联赛选手了. 并查集裸题. 比较麻烦的是删点. 但是从后往前加点就好操作很多. 所以考虑离线,先存图,然后没被删的点之间,有边就合并 ...

  9. 洛谷P1198 [JSOI2008]最大数(单点修改,区间查询)

    洛谷P1198 [JSOI2008]最大数 简单的线段树单点问题. 问题:读入A和Q时,按照读入一个字符会MLE,换成读入字符串就可以了. #include<bits/stdc++.h> ...

随机推荐

  1. matlab学习路线

    知乎:matlab学习路线 MATLAB数学教学视频

  2. 贪心/思维题 Codeforces Round #310 (Div. 2) C. Case of Matryoshkas

    题目传送门 /* 题意:套娃娃,可以套一个单独的娃娃,或者把最后面的娃娃取出,最后使得0-1-2-...-(n-1),问最少要几步 贪心/思维题:娃娃的状态:取出+套上(2),套上(1), 已套上(0 ...

  3. 题解报告:hdu 1087 Super Jumping! Jumping! Jumping!

    Problem Description Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very ...

  4. synchronized(1)用法简介:修饰方法,修饰语句块

    注意: 同一个对象或方法在不同线程中才出现同步问题,不同对象在不同线程互相不干扰. synchronized方法有2种用法:修饰方法,修饰语句块 1.synchronized方法 是某个对象实例内,s ...

  5. Dock

    搭建本地 Registry - 每天5分钟玩转 Docker 容器技术(20) 小结: dock 版本号 分为 3位,比如1.1.2 就分为1, 1.1,1.1,2 这个几个版本 这种 tag 方案使 ...

  6. Spring MVC 结合Velocity视图出现中文乱码的解决方案

    编码问题一直是个很令人头疼的事,这几天搭了一个Spring MVC+VTL的web框架,发现中文乱码了,这里记录一种解决乱码的方案. 开发环境为eclipse,首先,检查Window->pref ...

  7. zojDakar Rally(01背包)

    01背包 加上每次更新解题数目最多 总用时最少 因为要保证用时最少,要先把时长由小到大排序. 没排序 WA了几小时..链接 #include <iostream> #include< ...

  8. 面相切面编程AOP以及在Unity中的实现

    一.AOP概念 AOP(Aspect-Oriented Programming,面向切面的编程),它是可以通过预编译方式和运行期动态代理实现在不修改源代码的情况下给程序动态统一添加功能的一种技术.它是 ...

  9. GIT配置及用法

    ssh配置 TortoiseGit配置 用法: 下面是我整理的常用 Git 命令清单.几个专用名词的译名如下. Workspace:工作区 Index / Stage:暂存区 Repository:仓 ...

  10. 微信小程序组件解读和分析:十二、picker滚动选择器

    picker滚动选择器组件说明: picker: 滚动选择器,现支持三种选择器,通过mode属性来区分, 分别是普通选择器(mode = selector),时间选择器(mode = time),日期 ...