题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1833

分析:简单的数位DP

f[i][j][k]表示在i位数、最高位j的所有数字中k的出现次数

那么f[i][j][k]=∑f[i-1][0..9][k]

对于结果就加一加减一减就OK了

[bzoj1833][ZJOI2010]数字计数(数位DP)的更多相关文章

  1. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  2. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  3. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  4. [ZJOI2010]数字计数 数位DP

    最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...

  5. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  6. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  7. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  8. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  9. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

随机推荐

  1. ElementaryOS 0.4快速配置工具

    使用方法: 终端执行 wget http://linux-1251056822.costj.myqcloud.com/elementary_config && bash element ...

  2. rman 问题

    1. RMAN Repeatedly Fail To Backup Archivelogs with RMAN-20242 Cause: There is a mis-match between th ...

  3. Python安装第三方包(setup.py)

    在github上下载了records文件到本地. 解压文件 cmd切换到文件setup.py的目录下 先执行 python setup.py build 再执行python setup.py inst ...

  4. Storm概念学习系列之storm的雪崩

    不多说,直接上干货! Storm的雪崩问题的解决办法1: Storm概念学习系列之并行度与如何提高storm的并行度 Storm的雪崩问题的解决办法2:

  5. mysql中数据库的设计

      软件开发流程(CMMI): 1):项目启动; 2):项目计划: 3):需求分析; 需要得到的结果是什么? 4):系统设计;         该怎么做? 5):系统开发; 6):系统测试; 7):系 ...

  6. 手机页面操作栏的创建及WebFont的使用

    一.手机界面底部操作栏的创建. <style> .opers{ position:absolute; bottom:0px; left:0px; right:0px; height:3re ...

  7. 全志A33平台编译linux(分色排版)sina33

    全志A33平台编译linux 大文实验室/大文哥 壹捌陆捌零陆捌捌陆捌贰 21504965 AT qq.com 完成时间:2017/12/12 17:36 版本:V1.0 Xshell 5 (Buil ...

  8. Android ListView动态刷新某项Item

    使用ViewHolder来刷新某项数据,而不用每次都全部刷新数据. 继承BaseAdapter,新建ViewHolder类. public class TestListAdapter extends ...

  9. Android Bitmap转换WebP图片导致损坏的分析及解决方案

    背景 作为移动领域所力推的图片格式,WebP图片在商业领域证明了其应有的价值.基于其他格式的横向对比,其在压缩性能表现,及还原度极为优秀,节省大量的带宽开销.基于可观的效益比,团队早前已开始磋商将当前 ...

  10. JS高级——Blob处理二进制文件

    https://www.cnblogs.com/hhhyaaon/p/5928152.html