CodeForces242D:Connected Components (不错的并查集)
We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.
Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:
- Temporarily disconnect the cables with indexes from li to ri, inclusive (the other cables remain connected).
- Count the number of connected components in the graph that is defining the computer network at that moment.
- Re-connect the disconnected cables with indexes from li to ri (that is, restore the initial network).
Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.
Input
The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.
The following m lines contain the cables' description. The i-th line contains space-separated pair of integers xi, yi (1 ≤ xi, yi ≤ n; xi ≠ yi) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.
The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers li, ri (1 ≤ li ≤ ri ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.
Output
Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.
Example
6 5
1 2
5 4
2 3
3 1
3 6
6
1 3
2 5
1 5
5 5
2 4
3 3
4
5
6
3
4
2
问题:给定N个点,M条边,Q个问题。对于每个问题,给出l,r,问删去编号在l到r的这些边后有多少个连通块。
思路:开始以为需要上面数据结构来处理,没有想出来。
由于问题的特殊性,只有提问,没有更改,所以可以利用并查集的特殊性求解。令L是从前往后的并查集,R是从后往前的并查集,然后对每个问题,合并L[l-1]和R[r+1]即可。
合并:开始ans=N,合并一次,ans--。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int N,M,Q;
struct DSU
{
int fa[],num;
void init()
{
num=;
for(int i=;i<=N;i++)
fa[i]=i;
}
int find(int u)
{
if(fa[u]==u) return u;
fa[u]=find(fa[u]);
return fa[u];
}
void Union(int u,int v)
{
int fau=find(u);
int fav=find(v);
if(fau!=fav) num++,fa[fau]=fav;
}
}L[maxn],R[maxn]; int x[maxn],y[maxn],anc[maxn];
int main()
{
scanf("%d%d",&N,&M);
for(int i=;i<=M;i++) {
scanf("%d%d",&x[i],&y[i]);
} L[].init();
for(int i=;i<=M;i++){
L[i]=L[i-];
L[i].Union(x[i],y[i]);
}
R[M+].init();
for(int i=M;i>=;i--){
R[i]=R[i+];
R[i].Union(x[i],y[i]);
} int l,r,ans; scanf("%d",&Q);
while(Q--){
scanf("%d%d",&l,&r);
ans=;
DSU tmp=L[l-];
for(int i=;i<=N;i++){
tmp.Union(i,R[r+].find(i));
}
printf("%d\n",N-tmp.num);
}
return ;
}
CodeForces242D:Connected Components (不错的并查集)的更多相关文章
- F - Number of Connected Components UVALive - 7638 (并查集 + 思维)
题目链接:https://cn.vjudge.net/contest/275589#problem/F 题目大意:就是给你n个数,如果说两个数之间的gcd!=1,那么就将这两个点连起来,问你最终这些点 ...
- find the most comfortable road(hdu1598)不错的并查集
find the most comfortable road Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- T^T OJ 2144 并查集( 并查集... )
链接:传送门 思路:增加num[] 记录集合中的个数,maxx[] 记录集合中最大值,挺不错的并查集练习题,主要是 unite 函数里如何改变一些东西,挺好的题,能用C尽量不用C++,效率差蛮大的! ...
- D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)
292D - Connected Components D. Connected Components time limit per test 2 seconds memory limit per t ...
- CF-292D Connected Components 并查集 好题
D. Connected Components 题意 现在有n个点,m条编号为1-m的无向边,给出k个询问,每个询问给出区间[l,r],让输出删除标号为l-r的边后还有几个连通块? 思路 去除编号为[ ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
- 【并查集】【枚举倍数】UVALive - 7638 - Number of Connected Components
题意:n个点,每个点有一个点权.两个点之间有边相连的充要条件是它们的点权不互素,问你这张图的连通块数. 从小到大枚举每个素数,然后枚举每个素数的倍数,只要这个素数的某个倍数存在,就用并查集在这些倍数之 ...
- CodeForces 292D Connected Components (并查集+YY)
很有意思的一道并查集 题意:给你n个点(<=500个),m条边(<=10000),q(<=20000)个询问.对每个询问的两个值xi yi,表示在从m条边内删除[xi,yi]的边后 ...
- uva live 7638 Number of Connected Components (并查集)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
随机推荐
- 使用Sharesdk实现第三方平台登录(qq,新浪微博)
首先到sharesdk开放píng台下载demo ,以下要用到的文件来自于 simple里面 第一步:导入官方的jar包 第二步:添加ShareSDK.xml文件并修改相关píng台key 第 ...
- ORACLE RMAN增量备份经典理解
http://blog.itpub.net/26118480/viewspace-1793548/
- 实现TTCP (检测TCP吞吐量)
实现TTCP (检测TCP吞吐量) 应用层协议 为了解决TCP粘包问题以及客户端阻塞问题 设计的应用层协议如下: //告知要发送的数据包个数和长度 struct SessionMessage { in ...
- Struts2的值栈和OGNL牛逼啊
Struts2的值栈和OGNL牛逼啊 一 值栈简介: 值栈是对应每个请求对象的一套内存数据的封装,Struts2会给每个请求创建一个新的值栈,值栈能够线程安全的为每个请求提供公共的数据存取服务. 二 ...
- Jetson TK1 三:项目相关安装
ROS.QT.pyserial2.7.罗技手柄驱动.navigation.slam和rviz等 激光雷达IP设置,tk1对应的IP设置,tk1串口设置 一.安装ros参见官网 二.安装QT 百度QT官 ...
- Android-屏幕适配经验总结
本文记录一些适配问题的研究,基础概念不做过多介绍. Android在做屏幕适配的时候一般考虑两个因素:分辨率和dpi.分辨率是屏幕在横向.纵向上的像素点数总和,一般用"宽x高"的形 ...
- Linux出现cannot create temp file for here-document: No space left on device的问题解决
在终端输入:cd /ho 按tab键时,显示错误: bash: cannot create temp file for here-document: No space left on device 这 ...
- scp、paramiko、rsync上传下载限流、限速、速度控制方法
1.scp限速 scp -l 800 a.txt user@ip:/home/admin/downloads 此时的传输速率就是800/8=100KB左右 man -a scp查看参数含义.注意单 ...
- weex 项目开发(一) weex create project 与 weex init project 的区别
开发环境配置:http://www.cnblogs.com/crazycode2/p/7822961.html 1. weex create project 与 weex init project ...
- C语言之基本算法34—分解质因数(方法一)
//矩阵基础 /* ================================================================== 题目:输入一个正整数.将其分解为质因式,如:6 ...