CodeForces242D:Connected Components (不错的并查集)
We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.
Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:
- Temporarily disconnect the cables with indexes from li to ri, inclusive (the other cables remain connected).
- Count the number of connected components in the graph that is defining the computer network at that moment.
- Re-connect the disconnected cables with indexes from li to ri (that is, restore the initial network).
Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.
Input
The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.
The following m lines contain the cables' description. The i-th line contains space-separated pair of integers xi, yi (1 ≤ xi, yi ≤ n; xi ≠ yi) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.
The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers li, ri (1 ≤ li ≤ ri ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.
Output
Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.
Example
6 5
1 2
5 4
2 3
3 1
3 6
6
1 3
2 5
1 5
5 5
2 4
3 3
4
5
6
3
4
2
问题:给定N个点,M条边,Q个问题。对于每个问题,给出l,r,问删去编号在l到r的这些边后有多少个连通块。
思路:开始以为需要上面数据结构来处理,没有想出来。
由于问题的特殊性,只有提问,没有更改,所以可以利用并查集的特殊性求解。令L是从前往后的并查集,R是从后往前的并查集,然后对每个问题,合并L[l-1]和R[r+1]即可。
合并:开始ans=N,合并一次,ans--。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int N,M,Q;
struct DSU
{
int fa[],num;
void init()
{
num=;
for(int i=;i<=N;i++)
fa[i]=i;
}
int find(int u)
{
if(fa[u]==u) return u;
fa[u]=find(fa[u]);
return fa[u];
}
void Union(int u,int v)
{
int fau=find(u);
int fav=find(v);
if(fau!=fav) num++,fa[fau]=fav;
}
}L[maxn],R[maxn]; int x[maxn],y[maxn],anc[maxn];
int main()
{
scanf("%d%d",&N,&M);
for(int i=;i<=M;i++) {
scanf("%d%d",&x[i],&y[i]);
} L[].init();
for(int i=;i<=M;i++){
L[i]=L[i-];
L[i].Union(x[i],y[i]);
}
R[M+].init();
for(int i=M;i>=;i--){
R[i]=R[i+];
R[i].Union(x[i],y[i]);
} int l,r,ans; scanf("%d",&Q);
while(Q--){
scanf("%d%d",&l,&r);
ans=;
DSU tmp=L[l-];
for(int i=;i<=N;i++){
tmp.Union(i,R[r+].find(i));
}
printf("%d\n",N-tmp.num);
}
return ;
}
CodeForces242D:Connected Components (不错的并查集)的更多相关文章
- F - Number of Connected Components UVALive - 7638 (并查集 + 思维)
题目链接:https://cn.vjudge.net/contest/275589#problem/F 题目大意:就是给你n个数,如果说两个数之间的gcd!=1,那么就将这两个点连起来,问你最终这些点 ...
- find the most comfortable road(hdu1598)不错的并查集
find the most comfortable road Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- T^T OJ 2144 并查集( 并查集... )
链接:传送门 思路:增加num[] 记录集合中的个数,maxx[] 记录集合中最大值,挺不错的并查集练习题,主要是 unite 函数里如何改变一些东西,挺好的题,能用C尽量不用C++,效率差蛮大的! ...
- D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)
292D - Connected Components D. Connected Components time limit per test 2 seconds memory limit per t ...
- CF-292D Connected Components 并查集 好题
D. Connected Components 题意 现在有n个点,m条编号为1-m的无向边,给出k个询问,每个询问给出区间[l,r],让输出删除标号为l-r的边后还有几个连通块? 思路 去除编号为[ ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
- 【并查集】【枚举倍数】UVALive - 7638 - Number of Connected Components
题意:n个点,每个点有一个点权.两个点之间有边相连的充要条件是它们的点权不互素,问你这张图的连通块数. 从小到大枚举每个素数,然后枚举每个素数的倍数,只要这个素数的某个倍数存在,就用并查集在这些倍数之 ...
- CodeForces 292D Connected Components (并查集+YY)
很有意思的一道并查集 题意:给你n个点(<=500个),m条边(<=10000),q(<=20000)个询问.对每个询问的两个值xi yi,表示在从m条边内删除[xi,yi]的边后 ...
- uva live 7638 Number of Connected Components (并查集)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
随机推荐
- SLAVEOF以后
当我们想要某个Redis服务器复制另一个服务器时,我们可以在连接这个Redis服务器的客户端上输入“SLAVEOF”命令指定另一个服务器的IP地址和端口号: SLAVEOF <master_ip ...
- python的__name__和dir()属性
1.__name__属性 一个模块被另一个程序第一次引入时,其主程序将运行.如果我们想在模块被引入时,模块中的某一程序块不执行,我们可以用__name__属性来使该程序块仅在该模块自身运行时执行.示例 ...
- Linux最常用的命名
一.环境配置 vim /etc/sysconfig/network-scripts/ifcfg-eth0 vim /etc/sysconfig/network vim /etc/hostname vi ...
- cut printf awk sed grep笔记
名称 作用 参数 实例 cut 截取某列,可指定分隔 -f 列号 -d 分隔符 cut -d ":" -f 1, 3 /etc/passwd 截取第一列和第三列 printf pr ...
- 算法 - 求两个自然数的最大公约数(C++)
//************************************************************************************************** ...
- 转:Redis监控技巧
转自:http://blog.nosqlfan.com/html/4166.html Redis监控技巧 作者:nosqlfan on 星期二, 一月 29, 2013 · 16条评论 [阅读:25, ...
- firefox os 开发模拟器1.4版本号安装开发具体解释
首先在使用firefox os 模拟器的时候必须先下载firefox 浏览器,这个是众多web开发人员必备的工具,下载地址firefox 浏览器 .在最新的官方版本号是1.5版的模拟器,可是如今还不是 ...
- Solidworks如何绘制装饰螺纹线
1 插入-注解,装饰螺纹线 2 绘制装饰螺纹线,选择螺纹的边线,标准选择ISO,下面可以选择的范围就确定了(M6的孔,只能选择M8的螺纹或者M10的螺纹),画好之后在3D图中并没有明确的螺纹样式 ...
- UML类间关系
1继承 指的是一个类(称为子类.子接口)继承另外的一个类(称为父类.父接口)的功能,并可以增加它自己的新功能的能力,继承是类与类或者接口与接口之间最常见的关系:在Java中此类关系通过关键字exten ...
- iOS 小动画
一.图片旋转 CABasicAnimation* rotationAnimation; rotationAnimation = [CABasicAnimation animationWithKeyPa ...