POJ2955 Brackets —— 区间DP
题目链接:https://vjudge.net/problem/POJ-2955
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9630 | Accepted: 5131 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
题解:
求最多有多少对括号匹配。典型的区间dp。
方法一:
1.如果区间[l,r]的两端匹配,则左右各缩进一格,从而转化成处理[l+1, r-1]的区间。
2.不管是否符合条件1,都尝试去枚举分割点,使得整个区间分成两半,这样就可以把大区间的处理转化成两个小区间的处理。
记忆化搜索:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int dfs(int l, int r)
{
if(r<=l) return ;
if(dp[l][r]!=-) return dp[l][r]; if( (s[l]=='('&&s[r]==')')||(s[l]=='['&&s[r]==']') ) //如果两端匹配,则可以缩减范围
dp[l][r] = dfs(l+, r-) + ;
for(int k = l; k<r; k++) //枚举分割点,分成两半
dp[l][r] = max(dp[l][r], dfs(l, k)+dfs(k+, r)); return dp[l][r];
} int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, -, sizeof(dp));
cout<< dfs(, strlen(s+))* <<endl;
}
}
递推:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, , sizeof(dp));
int n = strlen(s+);
for(int len = ; len<=n; len++)
{
for(int l = ; l<=n-len+; l++)
{
int r = l+len-;
if( (s[l]=='('&&s[r]==')') || (s[l]=='['&&s[r]==']') )
dp[l][r] = dp[l+][r-] + ;
for(int k = l; k<r; k++)
dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+][r]);
}
}
printf("%d\n", dp[][n]*);
}
return ;
}
方法二:
1.可知一个符号最多只能与一个符号匹配,那么对于当前的符号,我们就枚举其他符号与其匹配(不管是能匹配成功)。
2.假设区间为 [l, r],为l枚举匹配符号,当枚举到k位置时,就把区间分割成了两部分:[l+1, k-1] 和 [k+1, r] 。从而就把大区间的求解转化为小区间的求解。
记忆化搜索:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int dfs(int l, int r)
{
if(r<=l) return ;
if(dp[l][r]!=-) return dp[l][r]; dp[l][r] = dfs(l+, r);
for(int k = l+; k<=r; k++)
{
int ismatch = (s[l]=='('&&s[k]==')')||(s[l]=='['&&s[k]==']');
int tmp = dfs(l+, k-)+dfs(k+, r)+ismatch;
dp[l][r] = max(dp[l][r], tmp);
}
return dp[l][r];
} int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, -, sizeof(dp));
cout<< dfs(, strlen(s+))* <<endl;
}
}
递推:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, , sizeof(dp));
int n = strlen(s+);
for(int len = ; len<=n; len++)
{
for(int l = ; l<=n-len+; l++)
{
int r = l+len-;
dp[l][r] = dp[l+][r];
for(int k = l+; k<=r; k++)
{
int ismatch = (s[l]=='('&&s[k]==')')||(s[l]=='['&&s[k]==']');
dp[l][r] = max(dp[l][r], dp[l+][k-]+dp[k+][r]+ismatch);
}
}
}
printf("%d\n", dp[][n]*);
}
return ;
}
POJ2955 Brackets —— 区间DP的更多相关文章
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- Codeforces 508E Arthur and Brackets 区间dp
Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...
- POJ 2995 Brackets 区间DP
POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...
- POJ2955:Brackets(区间DP)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Brackets(区间dp)
Brackets Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3624 Accepted: 1879 Descript ...
- poj 2955"Brackets"(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...
- HOJ 1936&POJ 2955 Brackets(区间DP)
Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...
- Code Forces 149DColoring Brackets(区间DP)
Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- 【bzoj1193】[HNOI2006]马步距离
[HNOI2006]马步距离 Description Input 只包含4个整数,它们彼此用空格隔开,分别为xp,yp,xs,ys.并且它们的都小于10000000. Output 含一个整数,表示从 ...
- 【BZOJ1208】宠物收养所(splay)
题意:见题面 思路:因为每个时刻要么全是人要么全是宠物,所以可以一棵splay解决 维护单点插入,单点删除,求前驱,求后继即可 ..,..]of longint; num,fa:..]of longi ...
- 详解DNS,你真的懂吗?
what`s this ? 概念 域名系统(英文:DomainNameSystem,缩写:DNS)是互联网的一项服务.它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网.D ...
- T1229 数字游戏 codevs
http://codevs.cn/problem/1229/ 题目描述 Description Lele 最近上课的时候都很无聊,所以他发明了一个数字游戏来打发时间. 这个游戏是这样的,首先,他拿出 ...
- sugar与阿龙的互怼(第一季)
§ 第一季 回家风波 高考了,啦啦啦~ 快要高考了,显然sugar很伤心. 显然不是因为快要考试了sugar才伤心的. 那为什么??? 因为他们都回家了,但是sugar和他的小伙伴们都不回家!!! ...
- Leetcode 数组问题2:买卖股票的最佳时机 II
问题描述: 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易( ...
- Java Enum枚举的用法(转)
说明:Java的枚举比dotnet的枚举好用,至少支持的方式有很多. 用法一:常量 在JDK1.5 之前,我们定义常量都是: public static fianl.... .现在好了,有了枚举,可以 ...
- Go -- 如何使用gcore工具获取一个core文件而不重启应用?
问题: 当调试一个程序的时候,理想状态是不重启应用程序就获取core文件. 解决: gcore命令可以使用下面步骤来获取core文件: 1. 确认gdb软件包已经被正确安装. 2. 使用调试参数编译程 ...
- 数据库系统学习(十)-嵌入式SQL语言之动态SQL
第十讲 嵌入式SQL语言之动态SQL 静态SQL 区别变量和属性:高级语言向嵌入式SQL传递变量的方法 动态SQL 动态构造SQL语句是应用程序员必须掌握的重要手段 SQL语句的动态构造示例 根据界面 ...
- 彻底理解javascript 中的事件对象的pageY, clientY, screenY的区别和联系。
说到底, pageY, clientY, screenY的计算,就是要找到参考点, 它们的值就是: 鼠标点击的点----------- 和参考点指点----------的直角坐标系的距离 stacko ...