题目链接:https://vjudge.net/problem/HDU-4027

A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use our secret weapon to eliminate the battleships. Each of the battleships can be marked a value of endurance. For every attack of our secret weapon, it could decrease the endurance of a consecutive part of battleships by make their endurance to the square root of it original value of endurance. During the series of attack of our secret weapon, the commander wants to evaluate the effect of the weapon, so he asks you for help. 
You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.

Notice that the square root operation should be rounded down to integer.

InputThe input contains several test cases, terminated by EOF. 
  For each test case, the first line contains a single integer N, denoting there are N battleships of evil in a line. (1 <= N <= 100000) 
  The second line contains N integers Ei, indicating the endurance value of each battleship from the beginning of the line to the end. You can assume that the sum of all endurance value is less than 2 63
  The next line contains an integer M, denoting the number of actions and queries. (1 <= M <= 100000) 
  For the following M lines, each line contains three integers T, X and Y. The T=0 denoting the action of the secret weapon, which will decrease the endurance value of the battleships between the X-th and Y-th battleship, inclusive. The T=1 denoting the query of the commander which ask for the sum of the endurance value of the battleship between X-th and Y-th, inclusive. 
OutputFor each test case, print the case number at the first line. Then print one line for each query. And remember follow a blank line after each test case.Sample Input

10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8

Sample Output

Case #1:
19
7
6

题解:

1.因为对区间的操作是:对每个数进行开根,所以不能像以前加减操作那样,也直接对区间的和进行操作(因为:a+b=sum 不能推出 根号(a)+根号(b) = 根号(a+b))。

2.根据上一点,所以在线段树中,我们只能对一段区间一直更新到每一个元素,然后再push_up求和。但是,如果每个操作都如此,那复杂度得多大?直接用数组维护比线段树更快,那要线段树何用?

3.再回看题目,数据最大为2^64,然后操作是对其开根,我们可以知道对1开根还是1,即当一个值是1时,我们不需要对其进行操作了。推广到一个区间:如果这个区间的所有元素都为1,那么我们也不需要再对这个区间进行操作。那么我们对2^64逐次开根:2^32 2^16 2^8 2^8 2^4 2^2 2^1 1,可以发现,一个数最多只需开7次根就会变成1,操作量很小了。所以:利用线段树进行维护,当一段区间的所有元素都为1,那么我们直接返回;否则更新至叶子结点(深入到每个元素)。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e5+; LL sum[MAXN<<]; void push_up(int u)
{
sum[u] = sum[u*] + sum[u*+];
} void build(int u, int l, int r)
{
if(l==r)
{
scanf("%lld", &sum[u]);
return;
} int mid = (l+r)>>;
build(u*, l, mid);
build(u*+, mid+, r);
push_up(u);
} void attack(int u, int l, int r, int x, int y)
{
if(l==r)
{
sum[u] = (LL)sqrt(sum[u]);
return;
}
//如果这段区域的每个值都为1,那么就无需再执行操作了
if(x<=l && r<=y && sum[u]==1LL*(r-l+)) return; int mid = (l+r)>>;
if(x<=mid) attack(u*, l, mid, x, y);
if(y>=mid+) attack(u*+, mid+, r, x, y);
push_up(u);
} LL query(int u, int l, int r, int x, int y)
{
if(x<=l && r<=y)
return sum[u]; LL ret = ;
int mid = (l+r)>>;
if(x<=mid) ret += query(u*, l, mid, x, y);
if(y>=mid+) ret += query(u*+, mid+, r, x, y);
return ret;
} int main()
{
int n, m, kase = ;
while(scanf("%d", &n)!=EOF)
{
build(, , n);
scanf("%d", &m);
printf("Case #%d:\n", ++kase);
for(int i = ; i<=m; i++)
{
LL op, x, y;
scanf("%lld%lld%lld", &op, &x, &y);
int xx = min(x, y), yy = max(x, y);
if(op==) attack(, , n, xx, yy );
else printf("%lld\n", query(, , n, xx, yy) );
}
printf("\n");
}
}

HDU4027 Can you answer these queries? —— 线段树 区间修改的更多相关文章

  1. HDU 4027 Can you answer these queries? (线段树区间修改查询)

    描述 A lot of battleships of evil are arranged in a line before the battle. Our commander decides to u ...

  2. HDU4027 Can you answer these queries?(线段树 单点修改)

    A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...

  3. HDU4027 Can you answer these queries? 线段树

    思路:http://www.cnblogs.com/gufeiyang/p/4182565.html 写写线段树 #include <stdio.h> #include <strin ...

  4. hdu 4027 Can you answer these queries? 线段树区间开根号,区间求和

    Can you answer these queries? Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/sho ...

  5. HDU-4027-Can you answer these queries?线段树+区间根号+剪枝

    传送门Can you answer these queries? 题意:线段树,只是区间修改变成 把每个点的值开根号: 思路:对[X,Y]的值开根号,由于最大为 263.可以观察到最多开根号7次即为1 ...

  6. Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)

    题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...

  7. 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)

    Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...

  8. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  9. E - Just a Hook HDU - 1698 线段树区间修改区间和模版题

    题意  给出一段初始化全为1的区间  后面可以一段一段更改成 1 或 2 或3 问最后整段区间的和是多少 思路:标准线段树区间和模版题 #include<cstdio> #include& ...

随机推荐

  1. python基础——4(数字、字符串、列表类型的内置方法介绍)

    目录 一.可变与不可变类型 二.数字类型 三.字符串类型 四.列表类型 一.可变与不可变类型 可变类型:值改变,但是id不变,证明就是在改变原值,是可变类型 不可变类型:值改变,id也跟着改变,证明产 ...

  2. SHELL二十篇(读书笔记)

    一.文件安全与权限 1.系统默认情况下建立文件与目录的权限: 系统默认情况下建立文件与目录的权限是: #vi /etc/bashrc 可以看到一般用户是002  root用户是022 说明:一般用户默 ...

  3. Java 新手学习日记一

    Java 基础知识点掌握: 数据类型 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间.内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据. 因此 ...

  4. luogu3959 宝藏

    状压搜索轻轻松松就过了--考场上代码太丑了T了几个点 #include <iostream> #include <cstring> #include <cstdio> ...

  5. python re 正则提取中文

    需求: 提取文本中的中文和数字字母(大小写都要),即相当于删除所有标点符号. 其中new是原字符串 news = re.findall(r'[\u4e00-\u9fa5a-zA-Z0-9]',new)

  6. php对象(继承,多态)

    /2.继承//function abc(){// $arr = func_get_args();//}//子类只能有一个父类 一个父类 可以有多个子类//override 重写//overlood 重 ...

  7. 【java基础 3】树形结构数据呈现的递归算法实现

    一.基本概况 在我的项目中,常常会用到树形结构的数据,最为明显的就是左边菜单栏,类似于window folder一样的东西. 而我之前一直是借助前端封装好的ZTree等工具实现展示,而后台则通常使用递 ...

  8. Go map基础

    package main import "fmt" //Map //创建:make(map[string]int) //获取元素: m[key] //key不存在时,获得value ...

  9. [NOIP2001] 普及组

    装箱问题 裸01背包,速刷过 #include<cstdio> #include<iostream> #include<cmath> using namespace ...

  10. 在线修改MySQL大表的表结构

    由于某个临时需求,需要给在线MySQL的某个超过千万的表增加一个字段.此表在设计之时完全按照需求实现,并没有多余的保留字段. 我们知道在MySQL中如果要执行ALTER TABLE操作,MySQL会通 ...