传送门

完了pkuwc咋全是dp怕是要爆零了……

设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下对应的独立集大小,枚举点\(i\),如果\(i\)不在\(S\)里,分情况考虑,设\(w[i]\)表示点\(i\)以及与之相邻的点,\(T=S|w[i]\),\(sz[S]\)表示二进制\(S\)有多少个\(1\),如果\(mx[T]=mx[S]+1\),那么$$f[T]+=f[S]\times A_{n-sz[S]-1}^{sz[w[i]-(w[i]&S)]-1}$$

上式的意思是,为了把\(i\)选进来,要把所有的与\(i\)相邻的点(除已经在\(S\)里的)都放到\(i\)的后面,那么共有\(n-sz[S]-1\)个位置,要放\(sz[w[i]-(w[i]\&S)]-1\)个数,就是一个排列

如果\(mx[T]<mx[S]+1\),那么先把\(f[T]\)清零,然后按上面更新就是了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=(1<<20)+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int fac[25],inv[25],w[25],sz[N],dp[N],mx[N];
int n,m,u,v,lim;
inline int A(R int n,R int m){return mul(fac[n],inv[n-m]);}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),lim=(1<<n);
while(m--)u=read()-1,v=read()-1,w[u]|=(1<<v),w[v]|=(1<<u);
fp(i,0,n-1)w[i]|=(1<<i);
fp(i,1,lim-1)sz[i]=sz[i>>1]+(i&1);
fac[0]=inv[0]=fac[1]=inv[1]=1;
fp(i,2,n)fac[i]=mul(fac[i-1],i);
inv[n]=ksm(fac[n],P-2);
fd(i,n-1,2)inv[i]=mul(inv[i+1],i+1);
dp[0]=1;
fp(S,0,lim-1)if(dp[S]){
fp(i,0,n-1)if(!(S&(1<<i))){
int T=S|w[i];
if(mx[T]<mx[S]+1)mx[T]=mx[S]+1,dp[T]=0;
if(mx[T]==mx[S]+1)dp[T]=add(dp[T],mul(dp[S],A(n-sz[S]-1,sz[w[i]-(w[i]&S)]-1)));
}
}printf("%d\n",mul(dp[lim-1],inv[n]));
return 0;
}

loj#2540. 「PKUWC2018」随机算法的更多相关文章

  1. 【LOJ】 #2540. 「PKUWC2018」随机算法

    题解 感觉极其神奇的状压dp \(dp[i][S]\)表示答案为i,然后不可选的点集为S 我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能 ...

  2. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  3. 【LOJ2540】「PKUWC2018」随机算法

    题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...

  4. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  5. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  6. LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】

    LINK 思路 首先在加入几个点之后所有的点都只有三种状态 一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过 然后前两个状态是可以压缩起来的 因为我们只需要记录下当前独立集大小和是否被访问 ...

  7. loj#2542. 「PKUWC2018」随机游走(MinMax容斥 期望dp)

    题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\( ...

  8. 「PKUWC2018」随机算法

    题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...

  9. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

随机推荐

  1. PHPMailer发送邮件乱码

    PHPMailer发送邮件乱码, $mail->CharSet="GB2312";$mail->Encoding = "base64"; 设成这样不 ...

  2. [LightOJ 1018]Brush (IV)[状压DP]

    题目链接:http://lightoj.com/volume_showproblem.php? problem=1018 题意分析:平面上有不超过N个点,如今能够随意方向划直线将它们划去,问:最少要划 ...

  3. Activity左边滑出,右边滑入的动画切换

    Activity左边滑出,右边滑入的动画切换 转载请注明出处:http://blog.csdn.net/u012301841/article/details/46920809 大家都知道Android ...

  4. u-boot简单学习笔记(一)

    一:Bootloader启动结构:      由于 Boot Loader 的实现依赖于 CPU 的体系结构,因此大多数 Boot Loader 都分为 stage1 和 stage2 两大部分.依赖 ...

  5. 使用$.when()解决AJAX异步难题之:多个ajax操作进行逻辑与(and)

    上一篇文章"JQuery.deferred提供的promise解决方式",提到了javascript异步操作的3个问题,以及javascript Promise入门.如今我们看下怎 ...

  6. mac上pydev

    转自:http://m.blog.csdn.net/blog/yangfu132/23689823 本来网上有教程,但是往往又一些不周到的地方,让人走了不少弯路. 使用 PyDev 进行调试 第一步: ...

  7. 【Android开发-8】生命周期,Activity中打开另外一个Activity

    前言:生命中有很多人陪伴自己走过一生中的某段旅程,仅仅是有些人仅仅是某阶段出现,有些人却陪伴自己非常久.就像小学.中学.高中.大学,那些以前以为会长久拥有的,当经历过天涯各地地忙碌于生活,或如意.或失 ...

  8. (Android 即时通讯) [悬赏],不管是谁发现一个漏洞奖励人民币1000元!

    悬赏,不管是谁发现一个漏洞奖励人民币1000元! 3Q Android 手机版即时通讯系统正式推出,可与电脑版 地灵(http://im.yunxunmi.com) 即时通讯系统互通!  适用于:小米 ...

  9. Lambda Architecture

    Lambda Architecture » λ lambda-architecture.net http://lambda-architecture.net/ Twitter's tweets ana ...

  10. 倒排索引 获取指定单词的文档集合 使用hash去重单词term 提高数据压缩率的方法

    倒排索引源于实际应用中需要根据属性的值来查找记录.这种索引表中的每一项都包括一个属性值和具有该属性值的各记录的地址.由于不是由记录来确定属性值,而是由属性值来确定记录的位置,因而称为倒排索引(inve ...