bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】
算是比较经典的高斯消元应用了
设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来
然后因为所有f都是未知数,高斯消元即可(记得输出大难的时候除以总概率和)
#include<iostream>
#include<cstdio>
using namespace std;
const int N=305;
int n,m,d[N],h[N],cnt;
double a[N][N],f[N],p,q,ans;
struct qwe
{
int ne,to;
}e[N*N*2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int add(int u,int v)
{
cnt++;
d[u]++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void gaosi()
{
for(int i=1;i<=n;i++)
{
int nw=i;
for(int j=i+1;j<=n;j++)
if(a[j][i]>a[nw][i])
nw=j;
for(int j=i;j<=n+1;j++)
swap(a[i][j],a[nw][j]);
for(int j=i+1;j<=n+1;j++)
a[i][j]/=a[i][i];
a[i][i]=1;
for(int j=i+1;j<=n;j++)
{
for(int k=i+1;k<=n+1;k++)
a[j][k]-=a[j][i]*a[i][k];
a[j][i]=0;
}
}
// for(int i=1;i<=n;i++)
// {
// int nw=i;
// for(int j=i;j<=n;j++)
// if(a[j][i]>a[nw][i])
// nw=j;
// if(nw!=i)
// for(int j=i;j<=n+1;j++)
// swap(a[nw][j],a[i][j]);
// for(int j=i+1;j<=n;j++)
// {
// double t=a[j][i]/a[i][i];
// for(int k=i;k<=n+1;k++)
// a[j][k]-=t*a[i][k];
// }
// }
for(int i=n;i>=1;i--)
{
for(int j=n;j>i;j--)
a[i][n+1]-=f[j]*a[i][j];
f[i]=a[i][n+1]/a[i][i];
}
}
int main()
{
n=read(),m=read(),p=read(),q=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
for(int i=1;i<=n;i++)
{
a[i][i]+=1;
for(int j=h[i];j;j=e[j].ne)
a[e[j].to][i]-=(1-p/q)/d[i];
}
a[1][n+1]+=1-p/q;
gaosi();
for(int i=1;i<=n;i++)
ans+=f[i];
for(int i=1;i<=n;i++)
printf("%.9lf\n",f[i]/ans);
return 0;
}
bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】的更多相关文章
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 563 Solved: 216[Submi ...
- BZOJ 1778 [Usaco2010 Hol]Dotp 驱逐猪猡 ——期望DP
思路和BZOJ 博物馆很像. 同样是高斯消元 #include <map> #include <ctime> #include <cmath> #include & ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)
传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 (高斯消元)
题面 题目传送门 分析 令爆炸概率为PPP.设 f(i)=∑k=0∞pk(i)\large f(i)=\sum_{k=0}^{\infty}p_k(i)f(i)=∑k=0∞pk(i),pk(i)p ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元
这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
随机推荐
- 数据导出Excel,动态列
今天碰到一个需求,要求将用户回答的问卷及问题导出Excel表格,问卷对应的问题数量不一致,需要动态添加列表头,简单记录. 要导出Excel需要添加poi.jar包 用户-问卷实体(固定列): pack ...
- SQLAlchemy(2):多表操作 & 连接方式及原生SQL
一对多:ForeignKey multitb_models.py import datetime from sqlalchemy import create_engine # 引入 创建引擎 from ...
- codevs3164 质因数分解
题目描述 Description (多数据)给出t个数,求出它的质因子个数. 数据没坑,难度降低. 输入描述 Input Description 第一行 t 之后t行 数据 输出描述 Output D ...
- EditText隐藏和显示
<?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...
- Mayor's posters POJ - 2528
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign h ...
- 1sting 大数 递推
You will be given a string which only contains ‘1’; You can merge two adjacent ‘1’ to be ‘2’, or lea ...
- Extjs6(六)——增删查改之查询
本文主要实现的效果是:点击查询按钮,根据form中的条件,在Grid中显示对应的数据(如果form为空,显示全部数据) 一.静态页面 1.查询按钮 { text:'查询', handler: 'onS ...
- mysql常用jar包
连接Mysql数据库: 常用的连接池有两种 DBCP连接池 C3P0连接池 Apache的commons组件 -- DBCP连接池: commons-dbutils-1.4.jar 封装并简化了JDB ...
- sql语句执行的很慢
一个 SQL 执行的很慢,我们要分两种情况讨论: 1.大多数情况下很正常,偶尔很慢,则有如下原因 (1).数据库在刷新脏页,例如 redo log 写满了需要同步到磁盘. (2).执行的时候,遇到锁, ...
- Eclipse-Java代码规范和质量检查插件-阿里编码规约
此工具配套阿里巴巴Java开发手册:http://www.cnblogs.com/EasonJim/p/6436387.html Eclipse安装和使用方法:https://github.com/a ...