Description

\(n(n\leq10^5)\)个点构成的有向图,有\(m(m\leq10^5)\)条连通信息,信息有三种:

  • 1 u v w,表示存在一条边权为\(w\)的有向边\((u,v)\);
  • 2 u L R w,表示\(\forall v\in[L,R]\),存在一条边权为\(w\)的有向边\((u,v)\);
  • 3 u L R w,表示\(\forall v\in[L,R]\),存在一条边权为\(w\)的有向边\((v,u)\)。

其中\(w\leq10^9\)。求点\(s\)到每个点的最短路,不存在输出\(-1\)。

Solution

线段树优化建图。

建立两棵线段树,其上点的点权分别表示“到达这个区间内所有点的最小花费”和“到达这个区间内任意一个点的最小花费”。



第一棵线段树上,由于花费\(v_{[L,R]}\)能够到达\([L,R]\)中所有点,当然也包含\([L,mid]\)和\([mid+1,R]\),所以父节点向子节点连0边;第二棵线段树上,由于花费\(v_{[L,R]}\)能够到达\([L,R]\)中的一个点,这个点当然也包含在其父节点中,所以子节点向父节点连0边。

如果不做感性理解的话,两棵线段树上的点分别用于连和被连,连向第一棵树上的\([L,R]\)就等价于连向\([L,R]\)中的每一个点,被第二棵树上的\([L,R]\)连就等价于被\([L,R]\)中的每一个点连。

由于每一条信息最多建立\(O(logn)\)条边,所以总边数是\(O(mlogn+4n)\)。

建完图后直接跑一遍单源最短路就好啦。

Code

//Legacy
#include <cstdio>
#include <cstring>
#include <queue>
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
inline int min(int x,int y) {return x<y?x:y;}
const int N=1e5+10;
int n,m,s;
const int N1=3e5+110;
int cnt,rt1,rt2,ch[N1][2];
int h[N1],edCnt;
struct edge{int v,w,nxt;} ed[N*20];
inline void edAdd(int u,int v,int w)
{
edCnt++; ed[edCnt].v=v,ed[edCnt].w=w;
ed[edCnt].nxt=h[u],h[u]=edCnt;
}
void bldTr1(int &p,int L0,int R0)
{
if(L0==R0) {p=L0; return;}
p=++cnt;
int mid=L0+R0>>1;
bldTr1(ch[p][0],L0,mid);
bldTr1(ch[p][1],mid+1,R0);
edAdd(p,ch[p][0],0),edAdd(p,ch[p][1],0);
}
void bldTr2(int &p,int L0,int R0)
{
if(L0==R0) {p=L0; return;}
p=++cnt;
int mid=L0+R0>>1;
bldTr2(ch[p][0],L0,mid);
bldTr2(ch[p][1],mid+1,R0);
edAdd(ch[p][0],p,0),edAdd(ch[p][1],p,0);
}
int optL,optR;
void add(int p,int L0,int R0,int u,int w,int type)
{
if(optL<=L0&&R0<=optR)
{
if(type==2) edAdd(u,p,w); else edAdd(p,u,w);
return;
}
int mid=L0+R0>>1;
if(optL<=mid) add(ch[p][0],L0,mid,u,w,type);
if(mid<optR) add(ch[p][1],mid+1,R0,u,w,type);
}
const lint INF=0x3F3F3F3F3F3F3F3F;
lint dst[N1];
std::queue<int> Q;
void SPFA(int s)
{
memset(dst,0x3F,sizeof dst);
dst[s]=0; Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v,w=ed[i].w;
if(dst[u]+w<dst[v]) dst[v]=dst[u]+w,Q.push(v);
}
}
}
int main()
{
n=read(),m=read(),s=read();
cnt=n;
bldTr1(rt1,1,n); bldTr2(rt2,1,n);
while(m--)
{
int opt=read(),u,v,w;
if(opt==1)
{
u=read(),v=read(),w=read();
edAdd(u,v,w); continue;
}
u=read(); optL=read(),optR=read(); w=read();
add(opt==2?rt1:rt2,1,n,u,w,opt);
}
SPFA(s);
for(int i=1;i<=n;i++) printf("%lld ",dst[i]<INF?dst[i]:-1);
puts("");
return 0;
}

Codeforces787D - Legacy的更多相关文章

  1. GeoIP Legacy City数据库安装说明

    Here is a brief outline of the steps needed to install GeoIP Legacy City on Linux/Unix. The installa ...

  2. BIOS设置之UEFI/Legacy BIOS切换图文详解

    近几年出现的电脑其中相当一部分都配置了UEFI BIOS,不过大多都默认以Legacy BIOS方式启动.而Win8正式上市后, 所有预装Win8(或Win8.1)的电脑都配置了UEFI BIOS并且 ...

  3. GPT vs MBR 分区 ,,, Legacy BIOS vs UEFI BIOS

    MBR与GPT两种磁盘分区格式的区别 http://itoedr.blog.163.com/blog/static/120284297201378114053240 GPT Partition Tab ...

  4. Neo4j 两种索引Legacy Index与Schema Index区别

    Legacy Indexes 在Neo4j 2.0版本之前,Legacy index被称作indexes.这个索引是通过外部图存储在外的Lucene实现,允许“节点”和“联系”以key:value键值 ...

  5. How to configure Veritas NetBackup (tm) to write Unified and Legacy log files to a different directory

    Problem DOCUMENTATION: How to configure Veritas NetBackup (tm) to write Unified and Legacy log files ...

  6. [论文笔记] Legacy Application Migration to the Cloud: Practicability and Methodology (SERVICES, 2012)

    Quang Hieu Vu, Rasool Asal: Legacy Application Migration to the Cloud: Practicability and Methodolog ...

  7. 安装win7或win8系统时UEFI和Legacy模式的设置

    很多新型号的笔记本或台式机主板都开始支持UEFI模式,比起原来的Legacy启动减少了BIOS自检,加快平台启动,如下图所示Legacy,UEFI启动过程: 安装系统,建议选择Legacy模式,在UE ...

  8. win7 64 + Ubuntu 14.04.1 64双系统安装,详解UEFI ~ GPT和legacy ~ MBR区别

    win7 64 + Ubuntu 14.04.1 64双系统安装 背景:我的笔记本之前的系统是window 7 64 + Ubuntu 14.04.1,用UEFI引导系统.安装过程是先装的win7,再 ...

  9. Legacy安装win7和Ubuntu14.04双系统

    Legacy安装win7和Ubuntu14.04双系统 安装环境 Legacy启动模式(传统引导) 笔记本已安装win7 硬盘启动顺序为: U盘 硬盘 光驱 安装方法 制作U盘启动盘 在Ubuntu官 ...

随机推荐

  1. Java MVC 分页实例

    共4个文件 requestLogList.jsp RequestInfoController.java RequestInfoBean.java RequestInfoService.java 1.r ...

  2. 不同版本的 Tomcat 设置用户名密码 的方法

    Tomcat : tomcat根目录\conf\tomcat-users.xml,找到 <tomcat-users> 标签,在后面添加 <user username="ad ...

  3. Cairo Drawing Model

    Cairo Drawing Model Cairo是一个强力的2D绘图库. Destination 是你最终绘图的目标, 可以是一系列Pixel或者绑定到SVG或PDF文件上. Source 是实际在 ...

  4. root.sh脚本支持checkpoints文件实现重复运行

    安装集群GRID/GI一般包括三个过程:首先,运行OUI/RunInstaller输入集群配置信息,其次,拷贝/编译集群文件,最后,以root用户运行root.sh脚本配置集群/启动集群,其中运行ro ...

  5. OCR/Vote disk 维护操作: (添加/删除/替换/移动) (文档 ID 1674859.1)

    适用于: Oracle Database - Enterprise Edition - 版本 10.2.0.1 到 11.2.0.1.0 [发行版 10.2 到 11.2]本文档所含信息适用于所有平台 ...

  6. Data truncation: Data too long for column 'id' at row 1

    Caused by: java.sql.BatchUpdateException: Data truncation: Data too long for column 'titleimg' at ro ...

  7. Xcode4删除文件后missing file警告

    1.运行终端,执行命令行进入missing file目录,然后运行 svn delete nameOfMissingFile 或 git rm nameOfMissingFile 2.删除隐藏的.sv ...

  8. selenium+chrome浏览器驱动-爬取百度图片

    百度图片网页中中,当页面滚动到底部,页面会加载新的内容. 我们通过selenium和谷歌浏览器驱动,执行js,是浏览器不断加载页面,通过抓取页面的图片路径来下载图片. from selenium im ...

  9. 一、submit和button区别

    一.submit和button区别 一.HTTP方法:GET.POST

  10. rhel7.3smb安装配置

    rhel7.3smb安装配置 1.安装 yum -y install samba samba-client cifs-utils 2.配置开机自启动,覆盖原配置文件 systemctl enable ...